找到 1 条结果
具有缺失数据容忍性的概率风力发电预测:一种端到端非参数方法
Probabilistic Wind Power Forecasting With Missing Data Tolerance: An End-to-End Nonparametric Approach
Zichao Meng · Ye Guo · Chenhao Zhao · IEEE Transactions on Sustainable Energy · 2025年9月
针对传感器故障、通信问题或测量中断导致的缺失数据问题,本文提出一种端到端非参数概率风力发电预测方法,集成缺失数据填补机制。该方法包含端到端训练与在线应用两个阶段:训练阶段通过迭代填补缺失数据并优化模型损失函数;应用阶段则持续填补实时观测数据以实现多步概率预测。相比现有方法,本方法无需假设分布类型,且通过联合优化提升填补质量与预测性能。实验表明,该方法在不同缺失率下均优于传统两阶段及参数化端到端方法,尤其在多步预测中表现更优。
解读: 该端到端非参数预测方法对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升PowerTitan大型储能系统的调度效率。其次可集成到iSolarCloud平台,增强风电场发电量预测和运维预警能力。该方法的缺失数据容忍机制可显著提升阳光电源设备在恶劣环境...