找到 1 条结果
一种物理信息辅助的深度强化学习方法用于大规模TSV阵列的信号与电源完整性优化
A Physics-Assisted Deep Reinforcement Learning Methodology for Signal and Power Integrity Optimization of Large-Scale TSV Arrays
Bingheng Li · Ling Zhang · Hanzhi Ma · Li Jiang 等6人 · IEEE Transactions on Components, Packaging and Manufacturing Technology · 2025年5月
高带宽内存(HBM)中硅通孔(TSV)阵列的信号完整性(SI)和电源完整性(PI)优化对于提高系统可靠性至关重要。然而,以往的研究大多侧重于单独的 SI 或 PI 优化,尚未实现具有良好收敛性的 SI/PI 优化。基于 TSV 阵列 SI/PI 优化的物理机制,本文提出了一种新颖的物理辅助深度强化学习(DRL)方法。开发了一种分治策略来处理大规模 TSV 阵列。利用物理机制设计 DRL 方法的细节,从而将不同的优化场景(SI 优化、PI 优化和 SI/PI 协同优化)统一到一个单一的过程中,设计...
解读: 从阳光电源的业务视角来看,这项基于物理辅助深度强化学习的硅通孔(TSV)阵列信号与电源完整性优化技术,对我们的高功率密度产品开发具有重要参考价值。 在光伏逆变器和储能变流器领域,功率半导体模块的集成度不断提升,多芯片封装和3D集成技术正成为提高功率密度的关键路径。该论文针对高带宽存储器中TSV阵列...