找到 2 条结果

排序:
电动汽车驱动 SiC器件 机器学习 ★ 5.0

基于人工智能与物理模型的智能电网异常检测综述

Artificial Intelligence and Physics-Based Anomaly Detection in the Smart Grid: A Survey

Giovanni Battista Gaggero · Paola Girdinio · Mario Marchese · IEEE Access · 2025年1月

先进通信系统与分布式资源的融合推动了智能电网的发展,提升了控制能力与运行效率。然而,系统复杂性的增加也带来了新的脆弱性,加剧了网络攻击、设备故障等异常风险。机器学习技术作为数据分析的变革性工具,正广泛应用于异常检测。本文综述了结合人工智能与物理模型的智能电网异常检测方法,系统梳理了当前研究现状,评估了各类应用场景、算法性能及验证方式,识别出关键研究缺口,并为该领域的进一步发展提供了学术见解。

解读: 该综述对阳光电源智能运维体系具有重要指导价值。AI与物理模型融合的异常检测方法可直接应用于iSolarCloud平台,提升ST储能系统和SG光伏逆变器的故障预警能力。针对储能系统,可结合电池物理模型与机器学习实现热失控、SOC异常等早期检测;对光伏电站,可融合IV曲线物理特性与AI算法识别组件遮挡、...

储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

基于图神经网络的电动汽车充电负荷预测与需求响应优化

A Comprehensive Review on Next-Generation Modeling and Optimization for Semiconductor Devices

Pratikhya Raut · Deepak Kumar Panda · Amit Kumar Goyal · IEEE Access · 2025年1月

电动汽车大规模接入对电网负荷管理提出新挑战,精准的充电负荷预测是需求响应优化的基础。本文提出基于图神经网络的充电负荷预测模型,捕捉充电站之间的时空关联性,结合需求响应策略实现充电负荷的削峰填谷。

解读: 该充电负荷预测技术可应用于阳光电源充电桩和储能系统的协同优化。通过智能预测和需求响应策略,优化充储一体化系统的能量调度,降低电网峰值负荷,提升充电基础设施的经济性,为光储充一体化解决方案提供智能调度支持。...