找到 1 条结果
基于鲁棒软演员-评论家算法的时空相关性风险调度方法
Risk-Based Dispatch of Power Systems Incorporating Spatiotemporal Correlation Based on the Robust Soft Actor-Critic Algorithm
Jianbing Feng · Zhouyang Ren · Wenyuan Li · IEEE Transactions on Power Systems · 2024年11月
基于安全深度强化学习(SDRL),本文提出一种考虑时空相关性的风险调度方法(SC-RD),同时建模违规风险的时间相关性与风电不确定性的空间相关性。为此设计了一种新型鲁棒软演员-评论家算法(R-SAC),无需近似或不确定性分布假设,即可在线求解非线性、非凸且含积分形式的SC-RD模型。通过构建鲁棒约束马尔可夫决策过程(R-CMDP),将违规风险作为智能体探索成本,并以成本的CVaR作为安全探索的风险指标。引入二阶中心矩评估模块高效估计CVaR,并结合加速原对偶优化实现最大熵自适应学习。在IEEE-...
解读: 该研究提出的时空相关性风险调度方法对阳光电源的储能与风电产品具有重要应用价值。R-SAC算法可优化ST系列储能变流器的调度策略,提升PowerTitan大型储能系统在风电场景的运行稳定性。具体而言:(1)可应用于储能电站EMS的调度优化,提高储能容量配置合理性;(2)可集成到iSolarCloud平...