找到 1 条结果
物理信息梯度估计加速基于深度学习的交流最优潮流
Physics-Informed Gradient Estimation for Accelerating Deep Learning-Based AC-OPF
Kejun Chen · Shourya Bose · Yu Zhang · IEEE Transactions on Industrial Informatics · 2025年3月
通过采用基于神经网络的响应式在线求解器,可以快速且可靠地解决最优潮流(OPF)问题。可再生能源发电的动态特性和电网条件的多变性要求利用新的数据实例频繁更新神经网络。为满足这一需求并减少数据准备所需的时间,我们提出了一种借助数据增强的半监督学习框架。在此框架下,岭回归取代了传统求解器,便于快速预测给定输入负荷需求的最优解。此外,为了在训练过程中加速反向传播,我们开发了新颖的批量均值梯度估计方法,并采用简化支路集来降低梯度计算的复杂度。数值模拟表明,配备了所提出的梯度估计器的神经网络能够始终获得可行...
解读: 从阳光电源的业务视角来看,这项基于深度学习的交流最优潮流(AC-OPF)加速技术具有重要的战略价值。随着我司在新能源发电和储能系统领域的深度布局,如何实现分布式能源的实时优化调度已成为核心技术挑战。 该论文提出的物理信息梯度估计方法直击新能源并网的关键痛点。光伏、风电等可再生能源的间歇性和波动性要...