找到 1 条结果

排序:
储能系统技术 储能系统 深度学习 ★ 5.0

基于图神经网络的电力系统实时多稳定性风险评估与可视化

Real-Time Multi-Stability Risk Assessment and Visualization of Power Systems: A Graph Neural Network-Based Method

Qifan Chen · Siqi Bu · Huaiyuan Wang · Chao Lei · IEEE Transactions on Power Systems · 2024年12月

相较于单一稳定性评估,多稳定性风险评估(MSRA)在应对可再生能源出力波动和系统故障等不确定性时更具实用性。本文提出一种基于图神经网络(GNN)的实时MSRA方法,统一处理功角、电压、频率及换流器主导的多种稳定性问题。通过构建运行状态图与扰动图作为GNN输入,结合图卷积层与初始残差恒等映射,提取高阶特征;引入GraphNorm缓解过平滑并提升泛化能力。基于实时数据实现多稳定性风险的连续预测,并利用alpha形状可视化稳定与不稳定区域。在IEEE 39节点、WECC 179节点及英国电网系统中的仿...

解读: 该GNN多稳定性评估技术对阳光电源PowerTitan储能系统及iSolarCloud平台具有重要应用价值。针对大规模储能电站中ST系列变流器的构网型GFM控制,该方法可实时评估功角、电压、频率及换流器主导的多维稳定性风险,解决可再生能源波动下的系统安全问题。其图神经网络架构可集成至智能运维平台,实...