找到 1 条结果

排序:
光伏发电技术 深度学习 ★ 4.0

基于卷积图神经网络与参数迁移的区域光伏功率短期概率预测

Short-Term Probabilistic Forecasting for Regional PV Power Based on Convolutional Graph Neural Network and Parameter Transferring

Fan Lin · Yao Zhang · Hanting Zhao · Wei Huo 等5人 · IEEE Transactions on Power Systems · 2024年11月

本文提出一种用于区域光伏功率短期概率预测的新型端到端深度学习模型,该模型具有局部-全局两层结构。在局部层,构建基于有向图的动态空间卷积图神经网络,以学习光伏电站的高维特征表示;在全局层,提出动态图池化方法,将局部特征聚合为全局表示,并映射为区域光伏功率的概率预测结果。为防止过拟合,引入基于参数迁移的训练策略。在公开真实数据上的实验表明,该模型可提供高质量且可靠的短期概率预测。

解读: 该区域光伏功率概率预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。其卷积图神经网络可建模区域内多个光伏电站的空间关联性,为SG系列逆变器集群提供更精准的短期功率预测。概率预测结果可优化PowerTitan储能系统的充放电策略制定,通过预测区间合理配置储能容量,提升系统经济性。参...