找到 3 条结果

排序:
储能系统技术 储能系统 SiC器件 微电网 ★ 5.0

基于广义带宽控制策略的混合实虚储能系统能量滤波

Energy Filtering Using a Generalized Bandwidth-Based Control Scheme for Hybrid Real and Virtual Energy Storage Systems

Derek Jackson · Yue Cao · IEEE Transactions on Sustainable Energy · 2025年9月

混合储能系统(HESS)包含多物理场的真实储能与可能的虚拟储能,通过电力电子接口集成。现有研究中基于滤波的控制方法因实用性不足而受限。本文提出一种适用于直流系统的广义带宽控制方案,填补了文献空白,并兼容分层控制架构。该方案基于通用储能模型(UESM),统一了不同储能设备的控制目标,通过代数关系定义控制系数,适用于多种储能类型。在HESS支撑的直流微网中验证了该方法的有效性,可实现功率分配、SOC调节及前瞻充电、削峰填谷等高层能量管理目标。

解读: 该广义带宽控制方案对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有直接应用价值。通过统一储能模型(UESM)可优化混合储能系统中超级电容与电池的功率分配策略,实现高频功率由超容承担、低频功率由电池响应的能量滤波效果,延长电池寿命。该方案与阳光电源现有分层控制架构兼容,可集成到iSo...

储能系统技术 模型预测控制MPC 微电网 ★ 5.0

基于模型预测控制的混合储能微电网统一控制方案

Unified Control Scheme Based on Model Predictive Control for Hybrid-Energy-Storage-Based Microgrids

Kuldeep Kumar · Chaeeun Lee · Sungwoo Bae · IEEE Transactions on Power Electronics · 2025年3月

本文提出了一种基于混合储能的交流微电网间功率分配统一分层控制方法。在本文中,每个微电网均包含混合储能(即超级电容器、电池和氢气储能)和可再生能源发电机(即光伏组件)。所提出的分层控制框架确保微电网间的功率分配取决于给定微电网中混合储能的荷电状态(SOC)。本文提出了一种基于自适应模型预测控制的三级控制层,该层负责根据给定微电网中各储能装置的SOC在微电网间实现精确的功率分配。三级控制层为二级控制层生成参考信号,二级控制层对各微电网中逆变器的脉宽调制进行控制。一级控制负责根据电源、负载以及储能装置...

解读: 从阳光电源的业务视角来看,这项基于模型预测控制的混合储能微电网统一控制方案具有显著的战略价值。该技术构建了包含超级电容、电池和氢储能的三层级控制架构,与我司在光储氢一体化解决方案的布局高度契合。 **技术价值方面**,该方案的核心创新在于通过自适应模型预测控制实现多微电网间基于SOC状态的精准功率...

储能系统技术 下垂控制 微电网 ★ 5.0

通过电动汽车参与的改进控制策略管理无功功率并降低交直流混合微电网互联变换器容量

An Improved Control Strategy for Managing Reactive Power and Reducing Capacity of Interlinking Converters by Participating of Electric Vehicles in Hybrid AC/DC Microgrids

Abbas Safari · Hesam Rahbarimagham · IEEE Access · 2025年1月

基于接口变换器的交直流混合微电网在智能电网中广受关注。接口变换器通过先进准确控制策略可执行精确功率共享、电能质量增强、双向功率传输等任务。本文提出基于直流电压下垂的分层控制,实现混合交直流微电网中接口变换器的双向功率传输。该方法可根据各子网需求在交流或直流子网间交换有功功率,直流电压围绕额定值轻微偏移。提出无功功率控制算法,可基于接口变换器最大额定容量补偿交流子网无功功率。研究电动汽车参与直流子网对改善无功管理和降低接口变换器容量的影响。电动汽车双向升压变换器电压控制环路中考虑另一下垂控制,通过...

解读: 该交直流混合微电网控制技术与阳光电源微电网解决方案高度相关。阳光微电网系统需要高效的交直流互联变换器和功率管理策略。下垂控制方法与阳光分布式控制理念一致。EV参与无功管理的思路可应用于阳光V2G和光储充一体化项目。接口变换器容量优化对阳光降低系统成本有重要价值。该研究验证的双向功率传输和无功补偿能力...