找到 2 条结果
面向最少控制数量的超大规模电网热过载缓解方法
Toward Minimal Number of Controls for Thermal Violation Mitigation for Very Large-Scale Grids
Lin Zeng · Hsiao-Dong Chiang · Dong Liang · IEEE Transactions on Power Systems · 2025年9月
为快速消除输电线路热过载以保障系统安全,需高效计算控制措施。本文提出一种新颖的两阶段方法,用于在大规模电网中快速求解最小控制动作集合,并在45000节点系统上以2秒内完成计算。第一阶段提取相关子网络,第二阶段采用迭代可行性检验(IFC)方法确定子网内最少控制数量。该方法综合考虑交流有功与无功潮流方程及混合整数非线性规划(MINLP)模型,常可达到全局最优。通过多规模系统测试,验证了方法的可扩展性与有效性,计算速度较传统方法提升三个数量级,且显著减少所需控制动作,适用于在线应用。
解读: 该超大规模电网热过载快速缓解技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。文中提出的两阶段最小控制动作算法可直接应用于储能系统的电网支撑功能:当检测到输电线路过载时,通过子网络提取和迭代可行性检验,在2秒内快速确定最少数量的储能单元参与有功/无功调节,避免全站响应造...
基于深度学习初始化与同伦延拓的牛顿-拉夫逊交流潮流收敛
Newton-Raphson AC Power Flow Convergence Based on Deep Learning Initialization and Homotopy Continuation
Samuel N. Okhuegbe · Adedasola A. Ademola · Yilu Liu · IEEE Transactions on Industry Applications · 2024年12月
潮流计算是许多电力系统研究的基础。随着可再生能源渗透率的提高,电网规划者倾向于在各种运行条件下进行多次潮流模拟,而不仅仅是在高峰或轻载条件下选取特定时刻进行模拟。对于电网规划者而言,尤其是在大型电网中,使交流潮流(ACPF)计算收敛仍是一项重大挑战。本文提出了一种两阶段方法来提高牛顿 - 拉夫逊交流潮流计算的收敛性,并将其应用于拥有6102个母线的得克萨斯州电力可靠性委员会(ERCOT)系统。第一阶段采用基于深度学习的初始化方法并进行数据再训练。在此阶段,开发了一个深度神经网络(DNN)初始化器...
解读: 从阳光电源的业务视角来看,这项基于深度学习和同伦延拓法改进牛顿-拉夫逊潮流计算收敛性的研究具有重要的战略价值。随着公司光伏逆变器和储能系统在全球电网中的渗透率持续提升,电网规划面临的潮流计算挑战日益严峻,这项技术为解决大规模新能源并网场景下的电网仿真难题提供了创新思路。 该研究在6102节点的ER...