找到 2 条结果 · IEEE Transactions on Sustainable Energy
考虑多因素动态效应的光伏功率预测:一种基于动态局部特征嵌入的广义学习系统
Photovoltaic Power Prediction Considering Multifactorial Dynamic Effects: A Dynamic Locally Featured Embedding-Based Broad Learning System
Ziwen Gu · Yatao Shen · Zijian Wang · Yaqun Jiang 等6人 · IEEE Transactions on Sustainable Energy · 2025年3月
精确的光伏功率预测是新型电力系统高效稳定运行的前提。现有研究多关注温度、辐照度等全局因素与光伏功率的关系,常忽略其局部动态影响,导致预测精度下降。为此,本文考虑多因素间的动态关联,提出一种基于动态局部特征嵌入的广义学习系统(DLFE-BLS)。首先设计动态相空间重构方法(DPSR)刻画多变量数据的动态特性,进而引入动态局部特征嵌入(DLFE)算法提取局部动态特征,并将其融入广义学习系统框架,构建DLFE-BLS模型以提升预测精度。实验结果表明,该模型在多种场景下均优于对比模型,尤其在迁移预测中表...
解读: 该DLFE-BLS光伏功率预测技术对阳光电源iSolarCloud智能运维平台和SG系列光伏逆变器具有重要应用价值。其动态相空间重构方法可优化MPPT算法在复杂气象条件下的功率追踪精度,局部动态特征提取能力可提升PowerTitan储能系统的充放电策略优化。该模型在迁移预测场景的优异表现,可直接应用...
风电机组齿轮箱载荷降低的风电场最优功率控制
Optimal Power Control in Wind Farms for Gearbox Load Reduction
Juan Wei · Yuxiang Li · Hanzhi Peng · Sheng Huang 等6人 · IEEE Transactions on Sustainable Energy · 2025年2月
时变工况下快速的功率与转矩波动会加剧风电机组齿轮箱的疲劳载荷并提高故障率。本文提出一种面向风电场的最优功率控制方法,在跟踪输电系统运营商功率调度指令的同时,优化功率分配以抑制齿轮箱内部振动位移波动,降低疲劳载荷。通过分析行星架、行星轮、太阳轮和直齿轮等关键部件的传动机制,构建了描述齿轮箱内部振动与机械转矩及输出功率关系的动态模型。基于模型预测控制框架建立最优控制问题,并构建基于齿轮箱实时振动状态的疲劳评估系统,用于表征机组运行品质并指导风电场发电调度,为风电场优化调度提供安全边界,有效抑制潜在故...
解读: 该风电场最优功率控制技术对阳光电源储能和光伏产品线具有重要借鉴价值。其基于模型预测控制的功率分配优化思路可应用于ST系列储能变流器的多机组协调控制,有助于降低储能系统的机械应力和疲劳载荷。文中的振动状态实时监测和疲劳评估方法也可集成到iSolarCloud平台,用于SG系列逆变器的预测性维护。特别是...