找到 2 条结果 · IEEE Transactions on Power Systems
考虑长时氢储能与多重不确定性的电-气-氢综合能源系统优化规划
Optimal Planning for Electricity–Gas–Hydrogen Integrated Energy Systems Considering Intertemporal Long-term Hydrogen Storage and Multiple Uncertainties
Jingxuan Zhang · Xinyue Chang · Yixun Xue · Xiang Bai 等6人 · IEEE Transactions on Power Systems · 2025年6月
为解决综合能源系统中能源供需长期失衡的问题,提出了一种涉及跨期长期储氢的电 - 氢和电 - 气互换系统。在该系统中,跨期氢能存储确保了全年荷电状态的连续性,以实现日内和日间的充放电,促进可再生能源消纳和能源的跨期转移。此外,考虑了影响能量转换设备效率和场景概率的多种不确定性因素。为应对综合能源系统中的多种不确定性,提出了一种将随机模型和鲁棒模型相结合的混合方法,并采用不确定性调整参数来灵活微调规划方案的保守程度。然后,将列与约束生成算法和鲁棒对偶理论相结合,将原问题分解为具有混合整数线性特征的主...
解读: 该电-气-氢综合能源系统优化规划技术对阳光电源储能与氢能业务具有重要应用价值。长时氢储能的跨时段调节特性可与PowerTitan储能系统形成互补,电化学储能负责短时调频调峰,氢储能实现季节性能量平衡,提升ST系列储能变流器在多能耦合场景的应用深度。鲁棒优化与随机规划相结合的不确定性处理方法,可直接应...
基于物理信息自监督预训练的GNN在大规模电力系统分析中的泛化能力提升
GNNs' Generalization Improvement for Large-Scale Power System Analysis Based on Physics-Informed Self-Supervised Pre-Training
Yuhong Zhu · Yongzhi Zhou · Wei Wei · Peng Li 等5人 · IEEE Transactions on Power Systems · 2025年2月
在人工智能驱动的电力系统分析(PSA)中,系统拓扑的高效且信息丰富的表示至关重要。尽管取得了重大突破,但近期采用图神经网络(GNNs)的方法在大规模电力系统分析中面临重大挑战,包括获取足够标注数据的高计算需求,以及对未见故障拓扑的泛化能力较差。为解决这些问题,我们提出了一种用于预训练图神经网络的自监督策略,该策略可在单个节点特征层面和整个图结构层面提升图神经网络的表达能力。通过集成物理信息技术,我们的策略使图神经网络能够内化适用于多个下游任务的基本原理。我们证明,我们的方法能够在无监督的情况下对...
解读: 该研究提出的物理信息自监督GNN框架对阳光电源的智能化产品升级具有重要价值。首先可应用于ST系列储能系统和SG系列光伏逆变器的电网拓扑感知与控制优化,提升GFM/GFL控制的适应性;其次可集成到iSolarCloud平台,增强分布式电站群的智能调度与故障诊断能力。该方法通过物理规律预训练提升模型泛化...