找到 1 条结果 · IEEE Transactions on Power Electronics

排序:
储能系统技术 储能系统 三相逆变器 机器学习 ★ 5.0

一种基于低质量数据的三相逆变器功率开关开路故障鲁棒数据驱动诊断方法

A Robust Data-Driven Method for Open-Circuit Fault Diagnosis of Power Switches in Three-Phase Inverters With Low-Quality Data

Yang Xia · Yan Xu · IEEE Transactions on Power Electronics · 2024年11月

机器学习(ML)技术在电力变换器故障诊断方面显示出了巨大潜力。然而,在实际应用中,诊断处理器所测量的数据可能会受到损坏,这会降低基于机器学习的诊断模型的性能。本文提出了一种鲁棒的数据驱动方法,用于在数据存在缺失值、异常值和噪声等低质量问题的情况下进行功率开关开路故障诊断。在离线阶段,首先训练一个鲁棒子空间矩阵,用于从缺失数据和异常值中恢复受损数据。然后,通过联合稀疏编码和变换学习对恢复后的数据进一步去噪,在此过程中可以得到一个变换权重矩阵。以处理后的数据作为输入,训练一个随机向量功能链接网络来生...

解读: 从阳光电源的业务视角来看,这项针对三相逆变器功率开关开路故障诊断的鲁棒数据驱动方法具有重要的应用价值。作为全球领先的光伏逆变器和储能系统供应商,阳光电源在大规模光伏电站和储能项目中部署了海量的逆变器设备,功率开关作为核心器件,其故障诊断能力直接影响系统可靠性和运维成本。 该技术的核心优势在于其对低...