找到 2 条结果 · IEEE Transactions on Power Electronics

排序:
储能系统技术 储能系统 SiC器件 可靠性分析 ★ 5.0

基于物理信息深度学习与稀疏数据的电力电子器件剩余寿命预测

Remaining Useful Life Prediction of Power Electronic Devices With Physics-Informed Deep Learning and Sparse Data

Le Gao · Chaoming Liu · Yiping Xiao · Chunhua Qi 等5人 · IEEE Transactions on Power Electronics · 2025年4月

准确预测碳化硅金属氧化物半导体场效应晶体管(MOSFET)的剩余使用寿命(RUL)对于确保电力电子系统的可靠性至关重要,特别是在辐射环境下。然而,大多数现有的深度学习方法依赖于密集采样的退化数据,使其不适用于退化观测数据有限的稀疏数据条件。为解决这一局限性,我们提出了一种用于稀疏RUL预测的物理信息深度学习(PIDL)方法。该方法通过定制的物理信息损失函数,将总电离剂量引起的退化机制(具体为界面和氧化物陷阱电荷积累)融入基于Transformer的神经网络架构中。这种损失函数明确惩罚与导通状态电...

解读: 从阳光电源的业务视角来看,这项针对碳化硅MOSFET剩余寿命预测的物理信息深度学习技术具有重要的战略价值。作为光伏逆变器和储能系统的核心功率器件,碳化硅MOSFET的可靠性直接关系到我们产品在全生命周期内的性能表现和运维成本。 该技术的核心优势在于解决了稀疏数据条件下的寿命预测难题。在实际应用场景...

储能系统技术 储能系统 工商业光伏 ★ 5.0

基于多逆变器离散功率回退的高效率宽范围射频功率生成系统

High-Efficiency Wide-Range RF Power Generation Systems With Discrete Power Back-Off From Multiple Inverters

Haoquan Zhang · Alexander S. Jurkov · Vladimir Kozitsky · Ky Luu 等6人 · IEEE Transactions on Power Electronics · 2024年9月

摘要:工业射频(RF)功率应用,如用于半导体加工的等离子体产生,需要在较宽的动态功率范围和可变负载阻抗条件下传输射频功率。理想情况下,射频功率系统应在整个工作功率范围内保持高效率、连续功率控制和快速动态响应。本文介绍了一种适用于此类应用的可扩展开关模式功率放大器(PA)架构和控制方法。我们将这种方法称为多逆变器离散回退(MIDB),它以无损方式组合开关模式功率放大器的输出,并对有源功率放大器的数量进行调制,以实现射频输出的离散步进。此外,该方法还采用离散电源调制和功率放大器组间的正交移相技术,以...

解读: 从阳光电源的业务视角来看,这篇论文提出的多逆变器离散功率回退(MIDB)架构虽然聚焦于射频功率应用,但其核心技术理念与我们在光伏逆变器和储能系统领域的技术演进方向高度契合,具有重要的借鉴价值。 该技术的核心价值在于通过多模块协同控制实现宽范围高效功率输出。论文采用的GaN基零电压开关D类功率放大器...