找到 3 条结果 · IEEE Transactions on Power Electronics
基于事件驱动的强化学习预测控制器设计——用于三相NPC变流器的在线逼近器方法
Event-Driven Based Reinforcement Learning Predictive Controller Design for Three-Phase NPC Converters Using Online Approximators
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年12月
本文针对电力变换器系统,研究了一种利用在线逼近器的无模型强化学习预测控制问题的两步事件驱动方法,解决了系统不确定性和不必要的开关损耗等问题。具体而言,本技术报告的关键特点如下:1) 采用一个评判神经网络实时学习性能函数;2) 采用一个执行神经网络在线逼近预测控制器,并使从评判网络获得的学习性能函数最小化;3) 采用两步事件驱动控制协议降低开关频率(SF)。此外,我们进一步探讨了该方案对参数不确定性的敏感性,并量化了其在低开关频率运行和未知干扰条件下的性能。此外,还对网络权重估计误差进行了收敛性分...
解读: 从阳光电源的业务视角来看,这项基于事件驱动的强化学习预测控制技术对三相NPC变流器的应用具有重要战略价值。NPC(中点钳位)拓扑是我司大功率光伏逆变器和储能变流器的核心架构,该技术在提升系统性能和降低运维成本方面展现出显著潜力。 该论文提出的双步事件驱动控制策略直接针对变流器的两大痛点:一是通过在...
数据驱动与事件驱动相结合的电力电子变换器在线学习预测控制
Combining Data-Driven and Event-Driven for Online Learning Predictive Control in Power Converters
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年9月
数据驱动与事件驱动相结合,为缓解经典有限控制集模型预测控制中电力变换器长期面临的研究难题(即模型参数不确定性和不必要的开关损耗)带来了可能。受此启发,我们将针对在线学习预测控制器的设计问题展开一项重要研究。与该领域的大多数先前研究不同,这可通过一个集成的数据驱动与事件驱动设计框架来实现。更确切地说,设计过程依赖于以下方面的结合:开发一种数据驱动的无模型自适应预测控制方法、引入在线强化学习技术以及利用事件驱动机制。此外,我们还基于输入 - 输出数据,针对低频开关操作下的未知不确定性,对鲁棒无模型预...
解读: 从阳光电源的核心业务视角来看,这项结合数据驱动与事件驱动的在线学习预测控制技术具有显著的战略价值。该技术针对功率变换器有限集模型预测控制(FCS-MPC)的两大痛点——模型参数不确定性和不必要的开关损耗——提供了创新性解决方案,这与我司光伏逆变器和储能变流器的核心技术需求高度契合。 从产品应用层面...
具有高过载能力的模块化换流器
Modular Commutated Converter With High-Overload Capability
Biao Zhao · Lin Wang · Xueyin Zhang · Ruihang Bai 等6人 · IEEE Transactions on Power Electronics · 2025年1月
本文提出了一种用于高压直流输电的具有高过载能力的新型模块化换流变换器。单开关器件模块(SDM)和高开关频率SDM的组合利用了拓扑的软开关特性以及集成门极换流晶闸管的高浪涌电流能力,使该变换器能够以较低的成本和体积实现短期高过载能力。文中详细介绍了该变换器的拓扑结构、工作原理和器件特性。研制了兆瓦级工程样机,实验结果验证了该方案的可行性。
解读: 从阳光电源的业务视角来看,这项模块化换相变流器技术在高压直流输电领域的创新具有重要的战略意义。该技术通过单开关器件模块(SDM)与高频开关SDM的组合设计,巧妙利用软开关特性和集成门极换相晶闸管(IGCT)的高浪涌电流能力,实现了短时高过载能力,这与我们在大规模新能源并网和储能系统中面临的核心挑战高...