找到 1 条结果 · IEEE Transactions on Power Electronics
全仿真数据驱动的多相变换器故障诊断领域泛化方法
Fully Simulated Data-Driven Domain Generalized Method for Multiphase Converters Fault Diagnosis
Haoxiang Xu · Zicheng Liu · Guangyu Wang · Dong Jiang 等5人 · IEEE Transactions on Power Electronics · 2024年9月
本文研究了深度学习模型在多相变换器功率开关器件故障诊断中的泛化能力。传统的故障诊断方法严重依赖真实世界的故障数据进行模型训练。然而,在工业环境中,多相变换器故障发生频率低,且故障实验成本高昂,导致实际故障数据极为匮乏。这一局限使得仅基于仿真数据训练的模型在实际应用中的可靠性降低。为克服这一挑战,本文提出了一种创新方法,无需依赖实验域样本即可提高跨域故障诊断效率。首先,该研究采用一种利用相电流重构的归一化预处理策略,以减小样本间的时间差异。然后,使用卷积自编码器从多相电流信号中提取深度特征。此外,...
解读: 从阳光电源的业务视角来看,这项基于纯仿真数据的多相变流器故障诊断技术具有重要的应用价值。在光伏逆变器和储能变流器等核心产品中,功率开关器件的开路故障是影响系统可靠性的关键因素。该技术通过深度学习实现跨域泛化诊断,有效解决了实际故障数据稀缺这一长期困扰行业的痛点。 该方法的核心价值在于仅依靠仿真数据...