找到 2 条结果 · IEEE Transactions on Power Electronics
逆变器系统早期故障检测的多阶密集特征提取
Intensive Multiorder Feature Extraction for Incipient Fault Detection of Inverter System
Min Wang · Feiyang Cheng · Min Xie · Gen Qiu 等5人 · IEEE Transactions on Power Electronics · 2024年10月
逆变器系统在航空航天、国防、交通运输、现代工业和电力系统中起着至关重要的作用,这促使学者和工程师们在故障诊断方面付出了大量努力。基于数据的方法在解决该问题时被广泛应用,因其可利用现有的历史数据,而无需进行复杂的数学建模,但它们在检测顽固的早期故障方面能力不足。因此,本文提出了一种深度多阶特征提取器(IMFE)用于逆变器系统的早期故障检测,该提取器能够深度提取统计特征并减少有害干扰。首先,采用一种在非相邻层之间具有短路径的密集结构,以实现多阶知识的复用。然后,对获取的特征进行优化,并舍弃低质量信息...
解读: 从阳光电源的业务视角来看,这篇关于逆变器系统早期故障检测的论文具有重要的工程应用价值。论文提出的密集多阶特征提取器(IMFE)方法,针对传统数据驱动方法在早期故障检测中的不足,通过密集连接结构实现多阶知识重利用和特征精炼,将故障检测率提升3.1%,这对于大规模光伏电站和储能系统的可靠性保障具有显著意...
全仿真数据驱动的多相变换器故障诊断领域泛化方法
Fully Simulated Data-Driven Domain Generalized Method for Multiphase Converters Fault Diagnosis
Haoxiang Xu · Zicheng Liu · Guangyu Wang · Dong Jiang 等5人 · IEEE Transactions on Power Electronics · 2024年9月
本文研究了深度学习模型在多相变换器功率开关器件故障诊断中的泛化能力。传统的故障诊断方法严重依赖真实世界的故障数据进行模型训练。然而,在工业环境中,多相变换器故障发生频率低,且故障实验成本高昂,导致实际故障数据极为匮乏。这一局限使得仅基于仿真数据训练的模型在实际应用中的可靠性降低。为克服这一挑战,本文提出了一种创新方法,无需依赖实验域样本即可提高跨域故障诊断效率。首先,该研究采用一种利用相电流重构的归一化预处理策略,以减小样本间的时间差异。然后,使用卷积自编码器从多相电流信号中提取深度特征。此外,...
解读: 从阳光电源的业务视角来看,这项基于纯仿真数据的多相变流器故障诊断技术具有重要的应用价值。在光伏逆变器和储能变流器等核心产品中,功率开关器件的开路故障是影响系统可靠性的关键因素。该技术通过深度学习实现跨域泛化诊断,有效解决了实际故障数据稀缺这一长期困扰行业的痛点。 该方法的核心价值在于仅依靠仿真数据...