找到 7 条结果 · IEEE Transactions on Power Electronics
一种基于模型无关在线学习的直流/交流逆变器控制策略
A Model-Independent Online Learning-based Control Strategy for DC/AC Inverters
Zifan Lin · Yulin Liu · Wenxiang Du · Qingle Sun 等6人 · IEEE Transactions on Power Electronics · 2025年9月
本文提出了一种用于电力电子逆变器的新型控制方案,该方案采用了由障碍李雅普诺夫函数引导的径向基函数神经网络控制器,具有在线学习和实时应用的特点。与许多现有的基于自适应神经网络的控制器不同,所提出的方法无需了解系统参数,也不需要任何离线训练。控制律完全在线更新,并保证收敛,确保在存在不确定性和干扰的情况下实现有界电流跟踪。其结构简单,计算复杂度极低,使其成为目前适用于实时直流 - 交流逆变器控制的最高效的无模型控制器之一。通过将该控制器应用于三电平中性点钳位逆变器,验证了其有效性和鲁棒性。
解读: 从阳光电源的业务视角来看,这篇论文提出的基于径向基函数神经网络的无模型在线学习控制策略具有显著的应用价值。该技术针对DC/AC逆变器控制的核心痛点,通过障碍李雅普诺夫函数引导的实时在线学习机制,实现了无需系统参数知识、无需离线训练的自适应控制,这与我司在光伏逆变器和储能变流器领域追求的高可靠性、强适...
基于物理信息神经网络与交叉注意力的磁芯损耗模型
A Magnetic Core Loss Model Based on Physics-Informed Neural Network with Cross-Attention
Yunhao Xiao · Chi Li · Zedong Zheng · IEEE Transactions on Power Electronics · 2025年8月
由于软磁材料固有的损耗机制尚不明确,损耗建模往往成为电力电子系统分析中的瓶颈。一方面,损耗会显著影响整体效率;另一方面,高频运行导致的小型化使得高频磁性元件的温升对损耗更为敏感,这使得热可靠性分析变得至关重要。然而,现有的损耗模型由于对复杂运行条件的高敏感性,在这些条件下的适用性会变差。本文提出了一种自适应损耗模型,该模型通过交叉注意力机制增强了物理损耗模型的学习能力和运行条件适应性,在测试集上实现了平均误差2.8%、最大误差12.3%的效果。此外,通过热分析验证了所提模型的准确性,相对误差为1...
解读: 从阳光电源的业务视角来看,这项基于物理信息神经网络的磁芯损耗模型技术具有重要的战略价值。在光伏逆变器和储能变流器等核心产品中,高频变压器和电感等磁性元件是影响系统效率和可靠性的关键部件。该技术通过交叉注意力机制实现的自适应损耗建模,能够在复杂工况下保持2.8%的平均误差和1.7%的热分析误差,这对我...
基于物理信息深度学习与稀疏数据的电力电子器件剩余寿命预测
Remaining Useful Life Prediction of Power Electronic Devices With Physics-Informed Deep Learning and Sparse Data
Le Gao · Chaoming Liu · Yiping Xiao · Chunhua Qi 等5人 · IEEE Transactions on Power Electronics · 2025年4月
准确预测碳化硅金属氧化物半导体场效应晶体管(MOSFET)的剩余使用寿命(RUL)对于确保电力电子系统的可靠性至关重要,特别是在辐射环境下。然而,大多数现有的深度学习方法依赖于密集采样的退化数据,使其不适用于退化观测数据有限的稀疏数据条件。为解决这一局限性,我们提出了一种用于稀疏RUL预测的物理信息深度学习(PIDL)方法。该方法通过定制的物理信息损失函数,将总电离剂量引起的退化机制(具体为界面和氧化物陷阱电荷积累)融入基于Transformer的神经网络架构中。这种损失函数明确惩罚与导通状态电...
解读: 从阳光电源的业务视角来看,这项针对碳化硅MOSFET剩余寿命预测的物理信息深度学习技术具有重要的战略价值。作为光伏逆变器和储能系统的核心功率器件,碳化硅MOSFET的可靠性直接关系到我们产品在全生命周期内的性能表现和运维成本。 该技术的核心优势在于解决了稀疏数据条件下的寿命预测难题。在实际应用场景...
基于物理信息神经网络的参数化热仿真方法用于快速功率模块热设计
A Parameterized Thermal Simulation Method Based on Physics-Informed Neural Networks for Fast Power Module Thermal Design
Yayong Yang · Zhiqiang Wang · Yu Liao · Wubin Kong 等6人 · IEEE Transactions on Power Electronics · 2025年3月
本文提出一种基于物理信息神经网络(PINNs)的参数化三维热仿真方法,以实现功率模块热设计的快速设计空间探索。利用PINNs能够快速逼近描述功率模块热行为的参数化偏微分方程解的能力,开发了用于碳化硅(SiC)三相半桥功率模块的热场仿真框架,以进行参数化仿真。经过一次无监督训练后,基于PINNs的模型可以快速预测不同输入参数组合下功率模块的热场分布结果。对比结果表明,在不同组合情况下,PINNs的预测结果与COMSOL数值模拟和实验测量结果大致相符。此外,在用于参数优化的大规模设计空间探索任务中,...
解读: 从阳光电源的业务视角来看,这项基于物理信息神经网络(PINNs)的参数化热仿真技术具有重要的工程应用价值。作为全球领先的光伏逆变器和储能系统供应商,我们在功率模块热设计方面面临着日益严峻的挑战:一方面,碳化硅(SiC)等新型功率器件的广泛应用使得热管理复杂度显著提升;另一方面,市场对产品快速迭代和定...
基于历史依赖Prandtl-Ishlinskii神经网络的任意激励波形下准静态铁心损耗预测
History-Dependent Prandtl–Ishlinskii Neural Network for Quasi-Static Core Loss Prediction Under Arbitrary Excitation Waveforms
作者未知 · IEEE Transactions on Power Electronics · 2025年1月
电力电子应用中的磁性元件通常会经历包含高频谐波和/或直流偏置的复杂激励波形。这种复杂性对传统的磁芯损耗建模方法提出了挑战,这些方法往往容易出现严重误差,或者仅适用于某些类型的激励波形。本文提出了基于历史依赖的普朗特 - 伊斯林斯基神经网络(HDPI - NN),用于在任意激励下准确预测准静态磁芯损耗。HDPI - NN 通过考虑磁性材料更完整的磁化机制(即磁畴壁运动、磁畴旋转和记忆效应),并利用专门的神经网络确定模型参数,实现了较高的建模精度和通用性。获取了硅钢 B35A270 和铁氧体 N87...
解读: 从阳光电源的业务视角来看,这项基于历史相关Prandtl-Ishlinskii神经网络的磁芯损耗预测技术具有重要的工程应用价值。在我司光伏逆变器和储能变流器产品中,磁性元件(如高频变压器、电感)是核心功率器件,其损耗特性直接影响系统效率和热管理设计。 该技术的核心价值在于能够准确预测复杂激励波形下...
用于拓扑持续时间不确定的开关模式电源转换器参数辨识的扩展物理信息神经网络
Extended Physics-Informed Neural Networks for Parameter Identification of Switched Mode Power Converters With Undetermined Topological Durations
Yangxiao Xiang · Hongjian Lin · Henry Shu-Hung Chung · IEEE Transactions on Power Electronics · 2024年10月
对于拓扑持续时间不确定的开关模式功率转换器而言,进行高精度参数识别颇具挑战,因为诸如开关时刻和拓扑转换时的电路状态变量等物理信息,对于实现这一目标至关重要。在传统的基于物理模型的解决方案中,需要额外的测量电路来弥补拓扑转换时未知物理信息的缺失,否则就必须牺牲精度。为避免使用不必要的额外硬件,本文提出了一种扩展物理信息神经网络(e - PINN),它将伪标签生成网络集成到分段物理信息神经网络中。该网络能够精确识别关键系统参数,以及每个拓扑的持续时间和拓扑转换时的系统状态。在工作于不连续导电模式(D...
解读: 从阳光电源的业务视角来看,这项基于扩展物理信息神经网络(e-PINN)的参数识别技术具有显著的应用价值。该技术针对开关电源变换器在拓扑持续时间不确定情况下的参数识别难题,提出了无需额外硬件即可实现高精度识别的解决方案,这与我司在光伏逆变器和储能变流器领域的核心需求高度契合。 在实际应用层面,该技术...
全仿真数据驱动的多相变换器故障诊断领域泛化方法
Fully Simulated Data-Driven Domain Generalized Method for Multiphase Converters Fault Diagnosis
Haoxiang Xu · Zicheng Liu · Guangyu Wang · Dong Jiang 等5人 · IEEE Transactions on Power Electronics · 2024年9月
本文研究了深度学习模型在多相变换器功率开关器件故障诊断中的泛化能力。传统的故障诊断方法严重依赖真实世界的故障数据进行模型训练。然而,在工业环境中,多相变换器故障发生频率低,且故障实验成本高昂,导致实际故障数据极为匮乏。这一局限使得仅基于仿真数据训练的模型在实际应用中的可靠性降低。为克服这一挑战,本文提出了一种创新方法,无需依赖实验域样本即可提高跨域故障诊断效率。首先,该研究采用一种利用相电流重构的归一化预处理策略,以减小样本间的时间差异。然后,使用卷积自编码器从多相电流信号中提取深度特征。此外,...
解读: 从阳光电源的业务视角来看,这项基于纯仿真数据的多相变流器故障诊断技术具有重要的应用价值。在光伏逆变器和储能变流器等核心产品中,功率开关器件的开路故障是影响系统可靠性的关键因素。该技术通过深度学习实现跨域泛化诊断,有效解决了实际故障数据稀缺这一长期困扰行业的痛点。 该方法的核心价值在于仅依靠仿真数据...