找到 1 条结果 · IEEE Transactions on Industry Applications

排序:
储能系统技术 储能系统 SiC器件 ★ 5.0

基于物理雅可比信息的编码器-解码器神经网络用于非线性潮流回归

Physically Jacobian-Informed Encoder-Decoder ANNs for Nonlinear Power Flow Regression

Hao Yang · Kai Zheng · Wendong Su · Zhenglong Sun 等6人 · IEEE Transactions on Industry Applications · 2024年7月

潮流(PF)是电力系统稳态分析与控制的基础。传统的基于一组隐式非线性方程构建的模型驱动潮流计算方法采用牛顿 - 拉夫逊法进行迭代求解。然而,潮流计算的速度和收敛性会受到合适初值以及迭代过程效率的影响。数据驱动的潮流回归方法可以通过从潮流数据集学习显式映射函数来克服上述问题。但是,该方法仅实现了从潮流输入到输出的非线性映射,忽略了潮流计算中的物理规则,这可能导致精度和泛化能力较差。本文提出了一种基于物理雅可比信息的编解码器神经网络(NNs)用于潮流非线性回归。基于正向和反向潮流模型,构建了一种采用...

解读: 从阳光电源的业务实践来看,这项基于物理雅可比信息的神经网络潮流计算技术具有显著的工程应用价值。在新能源电站并网运行中,快速准确的潮流计算是实现主动电压支撑、功率调度优化和故障预判的基础。传统牛顿-拉夫逊迭代方法在高比例新能源接入场景下常面临收敛性问题,特别是在光伏、储能等分布式资源大规模并网时,系统...