找到 1 条结果 · IEEE Transactions on Industry Applications
面向多方风电功率预测的隐私保护自适应联邦深度学习
Privacy-Preserving and Adaptive Federated Deep Learning for Multiparty Wind Power Forecasting
Yi Wang · Qinglai Guo · IEEE Transactions on Industry Applications · 2024年7月
先进的预测工具对于现代电力系统减轻可再生能源的不确定性至关重要。尽管数据驱动的方法在风电预测方面取得了显著进展,但数据可用性有限阻碍了其有效性。严格的数据监管规则和竞争利益使得相邻风电场无法整合数据集以学习更准确的预测模型。为应对这一挑战,我们提出了 SecFedAProx - LSTM,这是一种结合深度学习模型和隐私保护自适应联邦学习框架的新型风电预测方法。该方法动态调整局部优化目标,以在全局收敛性能和探索个体特征之间取得平衡,从而解决统计异质性问题。此外,它采用去中心化多客户端功能加密进行安...
解读: 从阳光电源的业务视角来看,本文提出的隐私保护自适应联邦学习风电预测方法具有重要的战略参考价值。虽然研究聚焦于风电场景,但其核心技术框架可直接迁移至光伏功率预测、储能系统优化及多能源协同管理等阳光电源的核心业务领域。 该技术的核心价值在于突破了数据孤岛困境。当前阳光电源在全球部署了大量光伏电站和储能...