找到 1 条结果 · IEEE Transactions on Industrial Electronics

排序:
储能系统技术 ★ 5.0

基于重启辅助分类器生成对抗网络和改进格拉米安角场的退役电池筛选

Retired Battery Screening Based on Rebooted Auxiliary Classifier Generative Adversarial Network and Improved Gramian Angular Field

Mingqiang Lin · Zelong Lin · Jinhao Meng · Wei Wang 等5人 · IEEE Transactions on Industrial Electronics · 2025年3月

由于锂离子电池(LIBs)具有高能量密度和长循环寿命,它们被广泛应用于电子设备、电动汽车和储能领域。退役电池的精确评估在很大程度上取决于利用既信息丰富又易于获取的最优健康特征。特别是对于时间序列数据,目前存在特征捕捉不充分以及难以捕捉有效特征的问题。本文提出了一种将改进的格拉姆角场(IGAF)与重启辅助分类器生成对抗网络(REACGAN)相结合的退役电池创新分类方法。IGAF方法利用快速傅里叶变换(FFT)提取电池充电电压曲线的幅值和相位特征,将曲线中的细微变化转化为二维图像,从而保留了时间和空...

解读: 从阳光电源储能业务视角来看,这项基于改进格拉姆角场和生成对抗网络的退役电池筛选技术具有重要的战略价值。随着公司储能系统装机规模持续扩大,退役锂电池的梯次利用已成为降低全生命周期成本、提升产品竞争力的关键环节。 该技术的核心优势在于将电池充电电压曲线的微小变化转化为二维图像,并通过快速傅里叶变换提取...