找到 1 条结果 · IEEE Transactions on Industrial Electronics

排序:
储能系统技术 储能系统 机器学习 ★ 5.0

基于机器学习的有源中点钳位逆变器多目标自动设计案例研究

A Case Study of Multiobjective Automatic Design for Active Neutral Point Clamped Inverter Based on Machine Learning

Jianing Wang · Ruiyuan Wang · Zhicheng Gao · Feishuang Sun 等5人 · IEEE Transactions on Industrial Electronics · 2024年12月

传统的变流器设计遵循顺序流程,通常包括拓扑设计、调制设计、元件设计、性能设计及其内部迭代。这种方法严重依赖人工经验且耗时较长,尤其是对于采用宽禁带器件所强调的多目标设计而言,宽禁带器件的使用加剧了设计目标之间的冲突。计算机辅助虚拟样机方法,简称为建模与优化,仍然受到建模过程中数值计算耗时较长的阻碍,并且在优化过程中无法响应设计要求的变化。为应对这些挑战,本文提出了一种基于机器学习的电力变流器自动设计的高级概念,将基于人工神经网络(ANN)的建模与基于深度强化学习(DRL)的优化相结合。所提出的方...

解读: 从阳光电源的业务视角来看,这项基于机器学习的有源中点钳位(ANPC)逆变器多目标自动设计技术具有重要的战略价值。该技术突破了传统逆变器设计中拓扑-调制-器件-性能的串行迭代模式,通过结合人工神经网络建模和深度强化学习优化,能够在效率、体积、成本、电流纹波和共模噪声等多维目标间实现智能权衡,这正契合阳...