找到 1 条结果 · Applied Energy
基于随机森林可解释人工智能揭示储能与可再生能源在脱碳进程中的协同作用
Understanding the synergy of energy storage and renewables in decarbonization via random forest-based explainable AI
Zili Chen · Zhaoyuan Wu · Lanyi Wei · Linyan Yang 等6人 · Applied Energy · 2025年1月 · Vol.390
摘要 可再生能源(RE)与储能系统(ESS)的协调发展对于低碳转型至关重要。除了最优规划方案外,理解规划结果背后的深层原因对于提升决策透明度与可靠性同样关键。本研究探讨了在不同脱碳阶段中可再生能源与中长期储能(MTES)之间协同关系的演变过程,提出了一种可解释的分析框架,用于归因并分析影响规划结果的关键因素。通过采用随机森林(Random Forest, RF)方法,该框架识别出在不同边界条件下(如碳排放限额、资源禀赋和经济约束)驱动可再生能源—储能协同效应的核心因素,从而深入揭示时间与空间因素...
解读: 该研究对阳光电源储能规划具有重要指导意义。研究揭示长时储能(LDES>100h)在新能源富集区域的季节性平衡价值,与PowerTitan液流储能系统的应用场景高度契合;短时储能在火电主导区域应对日内波动的需求,可通过ST系列PCS的快速响应能力实现。随机森林可解释性框架可集成至iSolarCloud...