找到 1 条结果 · 光伏发电技术
利用双层物理信息神经网络改进光伏模型参数估计
Improving Estimation of Parameters in Photovoltaic Models Using Two-Level Layered Physics-Informed Neural Networks
Nikta Shamsmohammadi · Giovanni Spagnuolo · José del Campo-Ávila · Esteban José Palomo 等5人 · IEEE Journal of Photovoltaics · 2025年9月
准确估计光伏模型中的参数对于改善系统监测、控制和诊断至关重要。在本研究中,提出了一种新颖的两级分层物理信息神经网络(PINN)架构,用于估计动态单二极管光伏模型中的参数,包括辐照度($G$)、温度($T$)和结电容($C_{j0}$)。在光伏电流和电压波形不受噪声影响的情况下,所提出的方法实现的误差为:辐照度($G$)误差为 0.25%,温度($T$)误差为 1.5%,结电容($C_{j0}$)误差为 2.1%。与传统优化方法相比,两级分层 PINN 表现更优,尤其在学习结电容($C_{j0}$...
解读: 该双层物理信息神经网络参数估计技术对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要应用价值。通过精准估计光伏组件的五参数模型(光生电流、二极管饱和电流、串联电阻等),可显著提升不同光照温度条件下的最大功率点追踪精度。该方法可集成到iSolarCloud智能运维平台,实现光伏阵列实时建模与性能诊...