← 返回
风电变流技术
★ 5.0
一种考虑风电出力依赖性不确定性的分布鲁棒机会约束优化方法用于含N-1安全约束的最优潮流问题
A distributionally robust chance constrained optimization approach for security-constrained optimal power flow problems considering dependent uncertainty of wind power
| 作者 | Wenwei Huang · Tong Qian · Wenhu Tang · Jianzhong Wu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 383 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel N-1 CCSCOPF model improves integration and security under wind uncertainty. |
语言:
中文摘要
摘要 风电并网发电将不确定性引入输电线路功率,可能增加N-1故障风险。本研究提出一种考虑风电出力依赖性不确定性的N-1线路安全约束最优潮流(SCOPF)模型,以降低此类风险。首先,构建一种改进的模糊集,通过引入Copula约束来刻画风电场之间的相关性,从而降低模型保守性。随后,采用分布鲁棒优化方法建立代表安全约束(SC)的机会约束(CC),并推导所提模型的可处理形式。接着,提出依赖敏感性指标,用于识别受依赖性不确定性显著影响的关键元件,并基于该指标构建面向机会约束的依赖敏感性模糊集,以降低求解复杂度。然后,采用Benders分解法实现并行计算,减少计算时间。最后,通过IEEE 24节点和IEEE 118节点系统验证了所提策略的有效性。实验结果表明,与基于随机优化或传统分布鲁棒优化的SCOPF相比,所提模型在保持鲁棒性的同时降低了运行成本,且由于采用了依赖敏感性模糊集和Benders分解法,计算负担显著减轻。
English Abstract
Abstract The integration of wind power generation introduces uncertainty into transmission line power , potentially increasing N -1 failure risks. This research proposes an N -1 line security-constrained optimal power flow (SCOPF) to mitigate such risks by considering wind power dependent uncertainty. Initially, a modified ambiguity set that integrates copula constraints to capture dependencies among wind farms is established, reducing conservatism. Then, the chance constraints (CC) representing security constraints (SC) are established through distributionally robust optimization , and the tractable forms of the proposed model are derived. Subsequently, dependence sensitivity indexes are proposed to identify components significantly affected by dependent uncertainty, and dependence-sensitivity-based ambiguity sets based on the dependence sensitivity indexes for the CC are established to reduce the solution complexity. Benders decomposition is then utilized to enable parallel processing and reduce computational time. Finally, the efficacy of the proposed strategy is demonstrated using IEEE 24-bus and IEEE 118-bus systems. Experimental results indicate that compared to SCOPF based on stochastic optimization or conventional distributionally robust optimization, the proposed model reduces cost while maintaining robustness, with significant reductions in computational burden attributed to dependence-sensitivity-based ambiguity sets and Benders decomposition.
S
SunView 深度解读
该分布鲁棒优化方法对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过Copula建模风电场相关性,可优化储能系统在N-1故障场景下的调度策略,降低保守性同时保证安全约束。所提依赖敏感性指标可集成至iSolarCloud平台,实现风储协同优化调度。Benders分解算法适用于大规模储能电站并行计算,显著提升实时调度效率。该方法可增强SG光伏逆变器与ST储能系统在高风电渗透率电网中的协同运行能力,降低系统运行成本。