← 返回
储能系统技术
★ 5.0
基于两种决策准则的退役电动汽车电池梯次利用网络规划
Planning a robust echelon utilization network for used electric vehicle batteries based on two decision-making criteria
| 作者 | Qi Wang · Yankui Liu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 384 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Two new ADRO models are constructed for planning the used EVB echelon utilization network. |
语言:
中文摘要
摘要 电动汽车动力电池的梯次利用为缓解废旧电池带来的污染问题以及降低储能系统和低速电动车的成本提供了重要机遇。本文基于两种决策准则,研究了退役电池的梯次利用网络规划问题,旨在规划设施选址与电池运输路径,以满足二级市场对电池质量的多样化需求。首先,针对二级市场需求及高质量退役电池数量的不确定性,构建了一个风险中性的自适应分布鲁棒优化(ADRO)模型。所提出的模型被重构为一个混合整数二阶锥规划(SOCP)模型,并通过加速Benders分解法(BD)进行求解。其次,进一步提出基于均值-条件风险价值(CVaR)的风险规避型ADRO模型,并设计了一种定制化的Benders分解算法,在每次迭代中求解一对子问题。数值实验结果表明:(i)梯次利用的应用可使电池再制造网络的运营成本降低3.7%;(ii)与样本平均近似(SAA)模型相比,本文提出的ADRO模型在样本外表现更优,能够在梯次利用网络规划中实现经济性与鲁棒性之间的良好平衡;(iii)加速Benders分解算法在计算效率上显著优于经典Benders分解方法;(iv)关键模型参数的敏感性分析揭示了最优性与回收量、模糊集规模以及风险偏好之间存在的权衡关系,可为能源管理者提供决策支持。上述结果表明,ADRO梯次利用网络规划模型可有效应用于能源管理相关问题。
English Abstract
Abstract The echelon utilization of electric vehicle batteries offers opportunities to mitigate pollution from used batteries and decrease costs in energy storage and low-speed electric vehicles. Based on two decision-making criteria, this study addresses the echelon utilization network planning problem about used batteries. Our problem plans the locations and battery transportation to meet diverse quality requirements in the secondary market. First, we develop a risk-neutral adaptive distributionally robust optimization (ADRO) model under uncertainty in secondary market demand and quantity of high-quality batteries. The proposed model is reformulated as a mixed-integer second-order conic programming (SOCP) model and solved by accelerated Benders decomposition (BD). Second, we propose a risk-averse ADRO model based on the mean-conditional value-at-risk (CVaR). Subsequently, we devise a tailored BD algorithm to solve a pair of subproblems in each iteration. The results of our numerical experiments demonstrate the following: (i) The application of echelon utilization can reduce the operational costs of the battery remanufacturing network by 3.7%. (ii) Our ADRO model exhibits better out-of-sample performance compared with the sample average approximation (SAA) model, which achieves the balance between economy and robustness for echelon utilization network planning. (iii) The accelerated BD algorithm significantly outperforms the classical BD method. (iv) The sensitivity analysis on key model parameters reveals trade-offs among optimality and recovery quantity, ambiguity set size, and risk preference to the informed energy managers. These results suggest that ADRO echelon utilization network planning models can be applied to energy management problems.
S
SunView 深度解读
该研究的梯次利用网络规划模型对阳光电源储能业务具有重要价值。文中分布鲁棒优化方法可应用于PowerTitan储能系统的退役电池管理,通过优化回收网络布局降低3.7%运营成本。ST系列PCS可集成梯次电池形成经济型储能方案,结合iSolarCloud平台实现电池质量分级与全生命周期追踪。该模型的风险决策机制可指导阳光电源构建动力电池回收体系,为储能系统降本增效,同时支撑充电桩业务的梯次储能应用场景开发。