← 返回
储能系统技术
★ 5.0
组合气电能源转型模型中的储能:以加利福尼亚州为例
Energy storage in combined gas-electric energy transitions models: The case of California
| 作者 | Dimitri M.S · Mo Sodwatan · Evan D.Sherwin · Adam R. Brandt |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 385 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 75 GW of total electrical energy storage are required in a net-zero California. |
语言:
中文摘要
摘要 加利福尼亚州实现2045年净零排放的愿景在很大程度上依赖于波动性可再生能源系统,因此,储能——特别是长时储能——可能在可靠供应低碳电力方面发挥根本性作用。我们采用BRIDGES模型研究储能问题,该模型是一个针对加利福尼亚州的多投资期(2025–2045年)组合气电容量扩展模型,设定碳排放目标逐步降低,直至2045年实现零排放。这一最小成本优化模型包含通过电转气方式生产的可再生燃气、以气态形式进行的长期能量储存、电池和氢储能等电能储存技术、可再生能源发电,以及相应的容量追踪与投资决策。本文评估了多种情景,以考察最优储能组合对系统层面和部门层面参数的敏感性。情景分析结果表明,在2045年实现净零排放的加利福尼亚州,所有类型的电能储存系统——其储能持续时间各不相同——都将被部署并成为必要组成部分,总储能容量约为75吉瓦(GW)。其中,锂离子电池系统约占该电力容量的80%,满足大部分短期储能需求。而以电转气再转电形式存在的氢储能则成为传统天然气储存的替代方案,占据总储能容量的绝大部分(约4太瓦时,TWh)。然而,这一容量仍不足当前天然气储存容量(94 TWh)的5%,表明现有天然气基础设施有相当一部分具备再利用的潜力。需求侧敏感性分析进一步证明,在净零经济中,较高的电力需求与更多锂离子电池建设相关,而较高的工业热力需求则推动更多长时储能系统的建设。此外,电转气系统通过本地供应可再生燃气满足部分工业热力需求,从而取代传统的集中式天然气储存并通过管道输送的模式,这对大规模天然气基础设施的未来前景提出了重大质疑。
English Abstract
Abstract California’s vision for a net-zero future by 2045 relies heavily on variable renewable energy systems . Thus, energy storage - particularly long-duration storage - could play a fundamental role in reliably supplying low-carbon electricity. We study energy storage using the BRIDGES model, a combined gas-electric capacity expansion model for California across multiple investment periods (2025-2045), modeled with progressively decreasing carbon emission targets to a zero emissions by 2045. This least-cost optimization model includes renewable gas production via power-to-gas, long-term storage of energy in gaseous form, electric energy storage such as through batteries and hydrogen storage , and renewable energy generation , all with capacity tracking and investment. Multiple scenarios are evaluated to examine the sensitivity of the optimal storage portfolio to system-level and sector-level parameters. The scenario results show that all electric energy storage systems - which vary in storage duration - are deployed and required in a net-zero California in 2045, amounting to around 75 GW of storage capacity. Lithium ion systems make up approximately 80% of this power capacity and supply most short-run storage needs. Hydrogen storage - in the form of a power-to-gas-to-power system - emerges as a replacement to conventional natural gas storage , comprising most of the total energy storage capacity ( ∼ 4 TWh). This capacity is less than 5% of the current natural gas storage capacity (94 TWh), indicating sufficient room for repurposing part of the gas infrastructure. A demand-side sensitivity analysis proves that higher electricity demand correlates with more builds of Li-ion batteries, while higher industrial heat demand leads to more builds of long-duration storage systems in a net-zero economy. Moreover, power-to-gas systems satisfy part of the industrial heat demand by locally supplying renewable gas, which overtakes the traditional centralized gas storage and transfers through pipelines, casting significant doubts on the future of the large-scale gas infrastructure.
S
SunView 深度解读
该研究验证了加州2045零碳目标下储能系统的关键作用,与阳光电源PowerTitan储能系统及ST系列PCS的应用场景高度契合。研究显示锂电池占80%装机容量主导短时储能,氢储能承担长时储能需求,这为阳光电源多元化储能产品组合提供战略指引。特别是4TWh氢储能容量需求,可推动公司在电制气(P2G)领域的技术布局。研究强调的需求侧响应与iSolarCloud智慧运维平台的预测性维护功能形成协同,可优化75GW级储能系统的容量配置与调度策略,为公司拓展北美零碳市场提供技术路线参考。