← 返回
光伏发电技术
★ 5.0
虚拟电厂运营商参与日前电能量现货与调峰辅助服务市场的内外部协同分布鲁棒竞价策略
Internal and external coordinated distributionally robust bidding strategy of virtual power plant operator participating in day-ahead electricity spot and peaking ancillary services markets
| 作者 | Wanying Li · Fugui Dong · Zhengsen Ji · Peijun Wang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 386 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Established a VPPO internal and external coordinated distributionally robust bidding decision model. |
语言:
中文摘要
摘要 虚拟电厂运营商(VPPO)在制定竞价决策时,必须统筹考虑外部市场环境与内部成员间的协调问题,并最小化风电和光伏出力不确定性带来的效益损失。本研究首先明确了VPPO参与日前电能量现货市场与调峰辅助服务市场时的内外部协同分布鲁棒(DR)竞价决策过程;其次,采用基于Wasserstein距离的模糊集方法刻画风电与光伏出力的预测误差,构建了VPPO内外部协同DR竞价决策的双层优化模型:上层为VPPO在外部市场的分布鲁棒竞价模型,下层为以VPPO为领导者、受控分布式电源、柔性负荷及储能(ES)为跟随者的主从博弈竞价模型;最后,采用结合精英策略的遗传算法与Gurobi求解器的混合方法对VPPO竞价策略进行优化。算法分析结果表明,所提出的方法能够为VPPO在外部市场的竞价提供优化方案,同时提升VPPO与内部成员的整体利益。多场景对比分析发现,风电预测误差对VPPO收益的影响大于光伏发电;当储能单位成本降至一定水平(200–300元/MW·h)时,储能成本对VPPO的影响减小;日前电能量现货市场价格对VPPO收益影响显著,当电价下降15%时,VPPO收益下降38.63%,且其对储能的调用程度大幅降低。
English Abstract
Abstract Virtual power plant operators (VPPO) must consider external markets and internal members' coordination issues when bidding decisions and minimize the loss of benefits from wind and PV uncertainty. This study first clarifies the internal and external coordinated distributionally robust (DR) bidding decision process for VPPO participation in the day-ahead electricity spot and peaking ancillary services markets. Secondly, a fuzzy set based on the Wasserstein distance for determining the forecast error of wind and photovoltaic output was used to establish a two-layer optimization model for the VPPO internal and external coordinated DR bidding decision. The upper level is the VPPO external market DR bidding model, and the lower level is the master-slave game bidding model with the VPPO as the leader and controlled distributed power, flexible load, and energy storage (ES) as the followers. Finally, the genetic algorithm with elite strategy and Gurobi solver combining method was used to optimize the bidding strategy of VPPO. The analysis of the algorithm shows that the proposed method gives an optimized solution for VPPO's bidding in the external market, and the interests of both VPPO and internal members are enhanced at the same time. The comparative analysis of multiple scenarios found that wind power forecast error has a greater impact on VPPO's profit than PV. When the unit cost of ES drops to a certain level (200–300 yuan/MW·h), the cost of ES has less impact on the VPPO. The price of the day-ahead electricity spot market had a tremendous impact on VPPO's profits, and when the price of electricity fell by 15 %, VPPO's profits fell by 38.63 %, and VPPO's use of ES declined dramatically.
S
SunView 深度解读
该虚拟电厂分布式鲁棒竞价策略对阳光电源ST系列储能变流器和PowerTitan储能系统具有重要应用价值。研究揭示储能单位成本降至200-300元/MW·h时对VPP收益影响趋缓,验证了我司储能系统规模化降本的战略方向。文中主从博弈模型可集成至iSolarCloud平台,优化光储协同调度策略,提升SG系列光伏逆变器与储能系统在现货市场和调峰辅助服务中的联合竞价能力。Wasserstein距离模糊集处理风光预测误差的方法,可增强我司VSG虚拟同步机控制技术应对不确定性的鲁棒性,为构建智能化VPP运营解决方案提供理论支撑。