← 返回
光伏发电技术
★ 5.0
探究气候驱动下漂浮式光伏系统的性能:能源产出提升与蒸发减少
Exploring climate-driven performance of floating photovoltaic systems: Energy production enhancement and evaporation reduction
| 作者 | Rodrigo Cáceres González · Cristóbal Sarmiento-Laurel · Hernán Alcayaga · Andrés J.Díaz · Alonso Pizarro · Juan Crespo Fuentes · Alicia Moya Carod · Camila Vásquez Páeze · Fabián Bustos Olavarría · Roberta Boscolo · Hamid Bastani |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 386 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | FPVs exceed ground systems in energy output and water savings in arid climates. |
语言:
中文摘要
本研究评估了四种漂浮式光伏(FPV)系统配置在4244个不同气候类型水体上的表现,涵盖半干旱、沙漠、海洋性西海岸、地中海和苔原气候,并考虑了夏季或冬季干燥、沿海影响及山地影响等变异因素。研究选用Penman–Monteith模型预测蒸发量,因其具有较低的平均绝对误差(MAE)和均方误差(MSE)。结果表明,最大的节水效果出现在冬季干燥的寒冷沙漠气候(BWk(w)),年蒸发减少量可达2066.15毫米。在A型和D型配置中观察到显著的水-能协同效应,其中支撑结构完全覆盖FPV下方水面,从而提升了能源产量;在BSk(w)气候下,A型配置的能源产量中位数最高达8187.65 Wh/m²/年,年均蒸发节约量中位数为1085.24 mm/年。苔原气候(ET)总体蒸发量较低,但冬季干燥(ET(w))和夏季干燥(ET(s))条件可增强系统性能。ET(w)气候下实现的能源产量增加中位数为6430.7 Wh/m²/年,蒸发节约中位数为1165.20 mm/年;而ET(s)气候紧随其后,分别为5997.42 Wh/m²/年和794.06 mm/年的节水量。模块温降(ΔT)对FPV系统性能至关重要。较高的ΔT值(如BSk(w)气候下的7.60°C)可显著提升能源产出和蒸发节约效果,使面板效率最高提高1.45%。相反,在ΔT较低的气候条件下(如Cfc气候,仅为4.26°C),系统效率则有所下降。本文对漂浮式光伏系统在广泛气候条件下的性能进行了全面表征,展示了其在提升能源产量和减少水资源损失方面的巨大潜力。
English Abstract
Abstract This study evaluates four floating photovoltaic (FPV) system configurations across 4,244 water bodies in diverse climates: semi-arid, desert, Marine West Coast, Mediterranean, and tundra, considering variations such as dry summers or winters, coastal influence, and mountain influence. The Penman–Monteith model is chosen to predict evaporation due to its low Mean Absolute Error (MAE) and Mean Square Error (MSE). Results indicate that the greatest water savings occur in cold desert climates with dry winters (BWk(w)), achieving reductions of up to 2066.15 mm per year. Significant water-energy synergies are observed in Type-A and Type-D configurations, where the support system fully covers the water under the FPV, leading to improvements in energy production, with a median reaching up to 8187.65 Wh/m 2 /year and a median evaporation saving of 1085.24 mm/year for the Type-A configuration in the BSk(w) climate. Tundra climates (ET) generally show less evaporation, but dry winters (ET(w)) and summers (ET(s)) enhance performance. ET(w) achieves a median energy production increase of 6430.7 Wh/m 2 /year and a median evaporation saving of 1165.20 mm/year, while ET(s) follows closely with 5997.42 Wh/m 2 /year and 794.06 mm/year in savings. The module temperature reduction ( Δ T ) is crucial for FPV performance. Higher Δ T , such as 7.60 ° C in BSk(w), boosts energy production and evaporation savings, increasing panel efficiency by up to 1.45%. Conversely, lower Δ T climates, like Cfc at 4.26 ° C , exhibit reduced efficiency. This paper provides a comprehensive characterization of FPV system performance across a wide range of climates, demonstrating their potential to enhance energy production and reduce water loss.
S
SunView 深度解读
该研究对阳光电源浮式光伏系统具有重要指导意义。研究表明FPV在BSk(w)等气候下可实现最高8187.65 Wh/m²/年的发电增益,组件温度降低7.60°C可提升效率1.45%。这为SG系列逆变器在FPV场景的MPPT优化算法提供数据支撑,可针对不同气候区开发自适应温度补偿策略。结合iSolarCloud平台的气象数据,可实现FPV电站的预测性维护和发电量精准预测,并为ST储能系统配置提供水-能协同优化方案,特别适用于干旱地区的水资源管理型光储项目。