← 返回
储能系统技术 ★ 5.0

基于响应面与因子分析方法的级联填充床热能储存单元多目标优化

Multi-objective optimization of cascaded packed bed thermal energy storage unit based on response surface and factor analysis methods

语言:

中文摘要

摘要 提出了一种具有不同填充比的级联多层填充床热能储存(TES)单元,以提升其热性能。建立了一个用于模拟流体传热的同心分散模型,并通过实验验证了其有效性。在此基础上,设计了四种结构方案,研究相变材料在不同熔点下填充比对填充床TES系统热性能的影响,包括均衡层、上重层、中重层和下重层结构。采用响应面法与因子分析法进行多因素多目标优化。不同于以往仅设计若干不同相变材料填充比构型的研究,本研究着重探讨填充比与热性能之间的相互作用关系,以及为实现最佳热性能各层最优填充比的确定。结果表明,下重层结构具有最短的充电时间(950分钟)和最高的能量利用率(61.72%),而上重层结构则具有最高的充电㶲效率(84.7%)和最大的TES储热容量(96.88 MWh)。在多目标优化方面,综合评价指标F的优化值为1.7112,对应的充电时间为778分钟,能量利用率为0.62,储热容量为99.76 MWh,充电㶲效率为0.83。本研究为相变材料填充比的先进优化及系统层面的综合评估奠定了基础。

English Abstract

Abstract The cascaded multi-layer packed bed thermal energy storage (TES) unit with varying fill ratios is proposed to enhance its thermal performance. A concentric dispersion model for simulating thermal fluid heat transfer is developed and experimentally validated. Based on this, four designs are explored to examine the effect of the filling ratio of phase change materials with different melting points on the thermal performance of the packed bed TES system, including that of balanced-layer, top-heavy-layer, middle-heavy-layer and bottom-heavy-layer. The multi-factor and multi-objective optimization is conducted by response surface and factor analysis methods. Differs from the previous studies that only designed several configurations with different phase change material filling ratios, the present sudy focuses on the interaction between the filling ratio and the thermal performances, as well as the optimal filling ratio of each layer to achieve the best thermal performance. The results show that the bottom-heavy-layer has the shortest charging time of 950 min and the highest energy utilization of 61.72 %, while the top-heavy-layer has the highest charging exergy efficiency of 84.7 % and the largest TES capacity of 96.88 MWh. As for the multi-objective optimization, the optimized value of comprehensive evaluation indicator F is 1.7112, and the corresponding charging time, energy utilization, TES capacity, and charging exergy efficiency is 778 min, 0.62, 99.76 MWh, and 0.83, respectively. This research establishes a foundation for the advanced optimization of phase change material filling ratios and comprehensive system-level evaluation.
S

SunView 深度解读

该级联填充床相变储热技术对阳光电源PowerTitan液冷储能系统和ST系列PCS具有重要参考价值。研究中的多目标优化方法(充电时间778分钟、能量利用率62%、储能容量99.76MWh)可应用于我司储能热管理系统设计,特别是底重层配置的高能量利用率(61.72%)与我司液冷技术追求的高效散热目标一致。响应面优化方法可借鉴用于iSolarCloud平台的储能系统预测性维护算法,通过多因素分析优化电池热管理策略,提升系统综合性能和全生命周期经济性。