← 返回
光伏发电技术
★ 5.0
量化光伏双层幕墙的参数交互:基于二阶Morris方法的敏感性分析
Quantifying the parameter interaction of photovoltaic double skin façade: A sensitivity analysis based on second-order Morris method
| 作者 | Xingjiang Liu · Haotian Yang · Chao Shen · Lin LU · Julian Wang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 386 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Second order sensitivity analyses quantifying parameter interactions are conducted. |
语言:
中文摘要
针对光伏双层幕墙(PV-DSF)的大量参数化分析已为其实际设计提供了有价值的参考,然而已有研究报道的最优参数值存在不一致现象,通常归因于气候条件的差异。其他研究也识别出参数之间的耦合效应,这种耦合可能对优化结果引入潜在误差。为解决参数影响中的此类差异,本文采用Morris方法对三类共十个参数分别进行一阶和二阶敏感性分析。通过选取具有最大欧氏距离的轨迹组以实现高效的分析过程。一阶敏感性分析结果表明,太阳能量丰富程度、室内照度设定值(Lset)以及半透明光伏模块的蚀刻率(ϑSTPV)具有最强的独立影响,其中ϑSTPV与空腔深度(Dcav)的影响复杂性显著高于其他参数。二阶敏感性分析进一步显示,最显著的耦合效应出现在Lset与其他与采光相关参数之间,其次是关键PV-DSF设计参数(如ϑSTPV和Dcav)与室外空气温度之间的相互作用。因此,建议研究人员避免在未经验证的情况下依赖单一参数优化结果,而应结合当地气候条件与照度需求,采用智能优化方法及机器学习技术进行多参数综合分析。
English Abstract
Abstract The numerous parametric analyses of photovoltaic double skin façades (PV-DSF) have provided valuable insights for its practical design, whereas inconsistent optimal values have been reported, typically attributed to variations in climate conditions. Other studies have also identified the coupling effect between parameters, which introduces potential errors to optimization results. To address such discrepancies in parametric impacts, this paper applies the Morris method to perform both first-order and second-order sensitivity analyses against three categories with ten parameters. A trajectory group with maximum Euclidean distance is adopted to achieve efficient analysis. The first-order sensitivity analysis reveals that solar energy richness, indoor illuminance setting value ( L set ), and the etching ratio of semi-transparent photovoltaic modules ( ϑ STPV ) exert the strongest individual impacts, with the complexity of ϑ STPV and cavity depth ( D cav ) remarkably outperforms others. The second-order sensitivity analysis further shows that the most significant coupling effect occurs between L set and other daylighting-related parameters, followed by interactions between key PV-DSF design parameters (such as ϑ STPV and D cav ) and outdoor air temperature . Consequently, it is recommended that researchers avoid relying on single-parameter optimization results without verification, and instead apply intelligent optimization methods and machine learning technology for multi-parameter analysis, considering local climate conditions and illuminance requirements.
S
SunView 深度解读
该光伏双层表皮幕墙参数耦合研究对阳光电源SG系列光伏逆变器及智能运维平台具有重要价值。研究揭示的半透明光伏组件蚀刻比与腔体深度的强耦合效应,可指导逆变器MPPT算法优化,针对建筑光伏复杂遮挡场景实现精准功率追踪。室内照度设定值与采光参数的交互作用,为iSolarCloud平台开发BIPV智能控制策略提供依据,结合气候条件和用户需求动态调节发电与采光平衡。建议将机器学习技术融入逆变器控制系统,实现建筑光伏多参数协同优化,提升系统综合效能。