← 返回
光伏发电技术 ★ 5.0

基于多任务学习的非线性天气修正方法提升光伏发电预测精度

Enhancing PV power forecasting accuracy through nonlinear weather correction based on multi-task learning

作者 Zhirui Tiana1 · Yujie Chenb1 · Guangyu Wangc
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 386 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Proposes a framework for multi-perspective weather utilization to improve PV forecasting.
语言:

中文摘要

准确的短期光伏(PV)功率预测对于优化能源管理以及在快速发展的可再生能源领域中维持电网稳定性至关重要。然而,光伏系统对变化天气条件具有固有的高敏感性,这给实现可靠的预测带来了重大挑战。现有研究主要通过两种途径来提高短期预测精度。一方面,部分研究将气象变量作为输入特征以提升预测精度,但该方法往往难以充分捕捉不同气象因素与光伏输出之间复杂且动态的相互作用。另一方面,大多数修正方法采用误差修正(EC)技术,根据预测的误差对初始光伏预测结果进行调整。然而,误差序列的高度波动性显著限制了EC的有效性,因为这些不可预测的误差损害了校正调整的可靠性。为此,本文提出一种新颖的两阶段框架,从多个角度利用气象信息以提高短期光伏功率预测的准确性。在第一阶段,一个定制的多任务学习(MTL)框架引入任务交互矩阵,以区分任务特定特征与共享特征,从而促进光伏输出与气象变量之间的有意义交互,并提供良好的可解释性。此外,动态损失加权机制确保了各任务间的均衡训练。在第二阶段,我们采用神经网络实现了一个非线性天气修正(WC)模块,通过有效融合预测的气象变量来精炼初始光伏预测结果,从而提升预测的准确性与鲁棒性。基于澳大利亚北领地实际光伏数据的实验验证表明,所提框架在不同季节下均持续优于基准模型,并通过消融实验确认了框架中各个组件的有效性。

English Abstract

Abstract Accurate short-term photovoltaic (PV) power forecasting is critical for optimizing energy management and maintaining grid stability within the rapidly growing renewable energy sector. However, the inherent high sensitivity of PV systems to varying weather conditions poses significant challenges to achieving reliable predictions. Existing research endeavours to enhance short-term forecasting accuracy through two primary approaches. On the one hand, some studies incorporate weather variables as input features to improve prediction precision, yet this method often falls short of fully capturing the intricate and dynamic interactions between diverse weather factors and PV output. On the other hand, most correction methods utilize error correction (EC) techniques that adjust initial PV forecasts based on predicted errors. Nonetheless, the highly volatile nature of error sequences substantially restricts the effectiveness of EC, as these unpredictable errors compromise the reliability of the corrective adjustments. To this end, we propose a novel two-stage framework that leverages weather information from multiple perspectives to enhance short-term PV power forecasting accuracy. In the first stage, a customized multi-task learning (MTL) framework employs a task interaction matrix to differentiate between task-specific and shared features, thereby facilitating meaningful interactions between PV output and weather variables while providing interpretability. Additionally, a dynamic loss weighting mechanism ensures balanced training across tasks. In the second stage, we implement a nonlinear weather correction (WC) module using neural networks , which refines the initial PV predictions by effectively incorporating the predicted weather variables, thereby enhancing both accuracy and robustness. Experimental validation using real PV data from the Northern Territory, Australia, demonstrates that our framework consistently outperforms baseline models across various seasons and confirms the effectiveness of each component within the framework through ablative experiments.
S

SunView 深度解读

该多任务学习光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。论文提出的两阶段框架可集成至SG系列逆变器的预测性维护系统:第一阶段MTL模型可解析气象因素与光伏输出的非线性耦合关系,优化MPPT算法的动态响应;第二阶段天气修正模块可提升功率预测精度,增强ST系列储能PCS的充放电策略制定能力。该方法对提高光储一体化系统的能量管理效率和电网友好性具有直接指导意义,可降低预测误差导致的调度偏差成本。