← 返回
光伏发电技术 ★ 5.0

具有普遍坡度场地的光伏电站最优设计

The optimal design for photovoltaic power plants on sites with a general slope

作者 A.Barbón · J.Aparicio-Bermejo · L. Bayon · P.Fortuny Ayuso
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 387 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The azimuth of trackers at high latitudes is affected by the azimuth of terrain.
语言:

中文摘要

摘要:某些斜坡地形的特征可能有利于光伏发电项目的发展。然而,为了防止由于地形方位角和倾斜角导致的显著发电量损失,必须对太阳能跟踪器的布置进行优化。此类优化引出了一个涉及14个变量的复杂问题。针对给定方位角(γg)和倾斜角(αg)的地形,确定太阳能跟踪器最优的方位角(γ)和倾角(α)绝非易事,这正是本文的主要研究目标。此外,光伏电站的最优设计还需确定合理的前后排间距以避免相邻光伏组件之间的遮挡,并确定最佳运行时段。本文给出了北半球10个地点的数值结果,地形方位角范围为0(°)至±45(°),地形倾斜角范围为0(°)至15(°)。主要结论如下:(i)所推导方程的鲁棒性通过三个方面得到了验证:数值验证、使用PVsyst和Mathematica软件的仿真验证以及实验验证;(ii)位于高纬度地区的光伏系统,其方位角受地形方位角的影响显著;相反,在低纬度地区,地形方位角对系统方位角的影响极小;(iii)若保持场址纬度不变,光伏系统的方位角会受到全年气象条件的影响;(iv)关于能量增益(EG),当光伏系统所在地点的纬度介于6(°)至19(°)之间时,最优布置方案相较于正南向布置并未带来显著更优的结果;而当比较发生在纬度高于19(°)的地区时,EG则表现出显著差异:(a)纬度越高,EG越大;(b)γg越大,EG越大;(c)αg越大,EG越大。以阿尔梅里亚作为对比基准,当αg = 5(°)、γg = 20(°)时,EG为240(Wh/m²);在相同参数下,赫尔辛基的EG达到390(Wh/m²)。当阿尔梅里亚的γg = 30(°)时,EG为530(Wh/m²);当αg = 15(°)时,阿尔梅里亚的EG达到1030(Wh/m²)。(v)关于平准化度电成本(LCOE)效率,对于纬度在6(°)至19(°)之间的地区,最优布置所得的LCOE值与太阳能跟踪器朝南布置的情况相近;而对于纬度高于19(°)的地区,则呈现以下规律:(a)纬度越高,最优布置的LCOE越高;(b)地形方位角越大,LCOE越高;(c)地形倾斜角越大,LCOE越高。因此可以得出结论:高纬度地区光伏系统的布置受到地形方位角的显著影响。

English Abstract

Abstract Some of the characteristics of sloping terrain may favour the development of P V power plant projects. However, the deployment of the solar trackers must be optimised in order to avoid significant production losses due to the azimuth angle and the angle of inclination of the terrain. Such optimisation leads to a complex problem, involving 14 variables. The optimal choice of azimuth angle ( γ ) and tilt angle ( α ) of a solar tracker for terrain defined by a given azimuth angle ( γ g ) and tilt angle ( α g ) is by no means trivial. This is the main objective of this paper. Moreover, an optimal P V power plant design requires inter-row spacing that avoid shading between adjacent P V modules in addition to determining the ideal operating periods. Numerical values are presented for 10 locations in the Northern Hemisphere, with terrain azimuth angles between 0(°) and ± 45 (°), and terrain tilt angles between 0(°) and 15(°). The following main conclusions can be highlighted: (i) The robustness of the derived equations was proven by validating them from three points of view: numerical validation, validation using PVsyst and Mathematica software and experimental validation; (ii) The azimuth angle of the P V system located at high latitudes is strongly affected by the azimuth angle of the terrain. In contrast, at low latitude locations, the azimuth angle of the terrain has very little influence; (iii) The azimuth angle of the P V system, if the latitude of the site is kept constant, is affected by the weather conditions throughout the year; (iv) Regarding energy gain ( E G ), for P V system site latitudes between 6(°) and 19(°), the optimal deployment does not achieve significantly better results than deploying the P V system in a southerly direction. In contrast, if this comparison is made at locations with latitudes above 19(°), the E G is significant: (a) The higher the latitude, the higher the E G ; (b) The higher the γ g , the higher the E G ; and (c) The higher the α g , the higher the E G . Using Almeria as a baseline for comparison purposes, with α g = 5 (°), γ g = 20 (°) and E G = 240 ( Wh/m 2 ), the E G is 390 ( Wh/m 2 ) in Helsinki with the same parameters. When γ g = 30 (°) in Almeria, the E G is 530 ( Wh/m 2 ). When α g = 15 (°) in Almeria, the E G is 1030 ( Wh/m 2 ). (v) Regarding L C O E efficiency, for latitudes between 6(°) and 19(°), the values obtained are similar to those provided by the southward deployment of solar trackers. For latitudes higher than 19(°) the following hold: (a) The higher the latitude, the higher the L C O E of the optimal deployment. (b) The higher the azimuthal terrain angle, the higher the L C O E , and (c) The higher the terrain tilt angle, the higher the L C O E . Therefore, it can be concluded that the deployment of P V systems at high latitudes is strongly affected by the azimuth angle of the terrain.
S

SunView 深度解读

该研究针对坡地光伏电站的方位角和倾角优化,对阳光电源SG系列逆变器在复杂地形项目中的MPPT算法优化具有重要参考价值。研究表明高纬度地区(>19°)通过优化部署可显著提升发电量(最高达1030 Wh/m²),这为我司1500V系统在山地电站的排布设计和iSolarCloud平台的智能选址算法提供了理论依据。建议将地形参数(γg、αg)纳入逆变器自适应控制策略,结合多路MPPT技术,在坡地项目中实现发电量最大化和LCOE最优化,特别适用于欧洲高纬度市场的地面电站开发。