← 返回
储能系统技术 ★ 5.0

利用二氧化硅储热介质提升抽水式热能储存系统的性能与成本效益

Advancing pumped thermal energy storage performance and cost using silica storage media

作者 Joshua Mc Tigu · Jason Hirsch · Zhiwen Ma
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 387 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Silica thermal storage has low cost and a wide operating temperature range.
语言:

中文摘要

摘要 抽水式热能储存(Pumped Thermal Energy Storage, PTES)是一种适用于长时储能(10−1000小时)的电力储存系统,因其能量容量的边际成本较低而具有优势。本文提出了一种采用颗粒物储热技术的PTES系统的技经模型。颗粒物成本低廉,并可在较宽温度范围内运行,相较于其他PTES设计方案,能够实现更高的效率并降低成本。我们展示了往返效率、单位功率输出、资本成本以及平准化储能成本(LCOS)如何依赖于压力比、换热器端温差、压降和最高运行温度等关键参数。我们将基于颗粒物的PTES(P-PTES)与采用液体储热介质的PTES系统进行了比较,后者使用熔盐作为高温储热介质、甲醇作为低温储热介质(MS-PTES)。研究发现,采用二氧化硅颗粒作为储热介质可推动PTES技术的发展:P-PTES可运行于比MS-PTES更高的最高温度。此外,由于P-PTES在流化床换热器中采用直接接触式传热,其换热器端温差可低于MS-PTES,且不会增加资本成本。因此,P-PTES系统的往返效率高于MS-PTES(66% 对比 57%),且LCOS更低(例如,在10小时放电条件下分别为0.115 ± 0.03 $/kWhₑ 和 0.171 ± 0.04 $/kWhₑ)。颗粒物及其容器的低成本意味着P-PTES能够以较低的单位能量容量资本成本提供长时储能。例如,单位能量的总资本成本从10小时时的245 $/kWhₑ降低至100小时时的38 $/kWhₑ。这些成本显著低于MS-PTES(100小时时为72 $/kWhₑ),并且优于当前及未来锂离子电池系统的预测成本(100–265 $/kWhₑ)。

English Abstract

Abstract Pumped Thermal Energy Storage (PTES) is an electricity storage system that is suitable for long-duration energy storage (10−1000 h) due to its low marginal cost of energy capacity. We present a techno-economic model of a PTES system that uses particle thermal energy storage. Particles have low costs and can be operated over a wide temperature range leading to increased efficiency and reduced costs compared to other PTES designs. We show how the round-trip efficiency, specific power output , capital cost, and levelized cost of storage (LCOS) depend on parameters such as the pressure ratio, heat exchanger approach temperature and pressure loss, and maximum temperature. We compare particle-PTES (P-PTES) performance to PTES which uses liquid thermal energy storage – i.e. molten salt hot storage and methanol cold storage (MS-PTES). We find that using silica particles for storage advances PTES technology : P-PTES can be operated at higher maximum temperatures than MS-PTES. Furthermore, P-PTES can achieve lower approach temperatures in the heat exchangers than MS-PTES without increasing capital costs, because P-PTES uses direct-contact heat transfer in fluidized bed heat exchangers. As a result, we find that P-PTES systems achieve higher round-trip efficiency than MS-PTES (66 % versus 57 %) and lower LCOS (e.g. 0.115 ± 0.03 $/kWh e versus 0.171 ± 0.04 $/kWh e for 10 h discharge). The low cost of particles and containment means that P-PTES can provide long-duration energy storage at low capital cost per unit energy capacity. For example, the total capital cost per unit energy reduces from 245 $/kWh e at 10 h to 38 $/kWh e at 100 h. These costs are considerably lower than MS-PTES (72 $/kWh e at 100 h) and also outcompete current and future Li-ion battery system projections (100–265 $/kWh e ).
S

SunView 深度解读

该泵热储能(PTES)技术为阳光电源长时储能方案提供重要参考。硅颗粒储热系统66%往返效率和0.115美元/kWh储能成本,显著优于锂电池,适合PowerTitan系列拓展至10-100小时长时储能场景。直接接触式流化床换热技术可启发ST系列PCS热管理优化。其低边际成本特性与阳光iSolarCloud平台结合,可开发新能源基地级储能调度策略,支撑GFM/VSG控制技术在长周期电网稳定中的应用,推动储能系统从小时级向百小时级跨越。