← 返回
光伏发电技术
★ 5.0
漂浮式光伏系统的热行为:不同安装高度下的性能比较及与陆地光伏系统的基准对比
Thermal behavior of floating photovoltaics: A comparison of performance at varying heights and benchmarking against land-based photovoltaics
| 作者 | Ramanan C.J. · King Hann Lim · Jundika Candra Kurni |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | For the same height FPV offers superior cooling compared to LPV. |
语言:
中文摘要
摘要 漂浮式光伏(FPV)在节约土地资源、减少水体蒸发以及缓解光伏组件热退化方面具有显著优势。先前的研究表明,FPV由于冷却效果更佳,其光伏组件的发电效率优于陆地光伏(LPV)系统。然而,大多数已报道的研究存在若干局限性,例如异地测量、人工数据采集、数据平均处理、数值分析的限制,以及FPV与LPV设计之间比较的不足。这些局限性阻碍了对因冷却机制带来的FPV性能优势进行准确预测。因此,本研究针对250 mm安装高度的FPV、800 mm安装高度的FPV以及800 mm安装高度的LPV系统,开展了为期六天的性能评估实验。该研究综合考虑了动态环境参数的影响,包括太阳辐射、环境温度与水温、湿度、风速与风向以及降雨等因素。结果表明,在非最佳太阳辐射发电时段(即非工作时间),250 mm高度FPV的温度比800 mm高度LPV降低了超过2°C。值得注意的是,这一改善是在太阳辐射不适宜发电的时段记录的。与此同时,在整个实验时长的57%时间内,800 mm高度FPV相较于同高度LPV实现了2°C至0°C范围内的降温效果,表现出最优的冷却性能。此外,研究发现湿度、降雨、波动的太阳辐射、较高的风速以及水温与环境温度之间的较大差异,均对FPV的冷却效果具有显著贡献。本研究所获得的结果可用于提高FPV性能预测的准确性,从而推动绿色能源技术的发展。
English Abstract
Abstract Floating photovoltaics (FPV) offer benefits in land conservation, evaporation prevention and mitigation of PV panel thermal degradation. Previous studies suggested that enhanced cooling in FPV contributes to the improved efficiency of the PV panel compared to land-based PV (LPV) systems. However, most reported studies have constraints such as ex-situ measurements, manual data collection, data averaging, numerical analysis limitations, and limited comparison between FPV and LPV designs. These limitations hinder the accurate prediction of FPV’s superior performance due to cooling mechanisms. Hence, this study investigates the performance evaluation of LPV and FPV systems in terms of 250 mm height FPV, 800 mm height FPV and 800 mm height LPV for a total measurement duration of six days. This investigation takes into account the effect of dynamic environmental parameters, including solar radiation, ambient and water temperature, humidity, wind speed and direction, and rainfall. Results reveal that the temperature of the FPV at 250 mm height reduces by more than 2 ∘ C compared to the LPV at 800 mm height. It should be noted that this improvement was recorded during off-time when solar radiation is not optimal for energy generation. Meanwhile, the 800 mm height FPV demonstrates cooling at a range of 2 ∘ C to 0 ∘ C compared to 800 mm height LPV for 57 % of the experiment duration in time and makes it the best cooling performer. Furthermore, humidity, rainfall, fluctuating solar radiation, high wind speed and higher differences in water and ambient temperature were found to significantly contribute to FPV cooling. The resulting findings can be used to improve the accuracy of FPV performance prediction and thus contribute to the advancements of green energy technology.
S
SunView 深度解读
该研究揭示浮式光伏(FPV)较地面光伏温度降低2°C以上,显著提升发电效率。对阳光电源SG系列逆变器在FPV场景应用具重要价值:1)需优化MPPT算法以适应FPV独特的温度-功率特性曲线;2)可结合iSolarCloud平台开发FPV专用热管理模型,实时监测水温、湿度等环境参数;3)建议针对250-800mm不同安装高度开发差异化逆变器散热方案;4)为PowerTitan储能系统与FPV耦合提供温控优化依据,提升系统整体效率。该技术可推动阳光电源在水面光伏市场的产品创新与竞争力提升。