← 返回
储能系统技术
★ 5.0
集成潜热储能的混合式深孔地源热泵系统的自适应模型预测最优控制
Adaptive model-based optimal control of hybrid deep borehole ground source heat pump systems with integrated latent heat thermal energy storage
| 作者 | Zeyuan Wang · Xinlei Zhou · Fenghao Wang · Xinyi Sh · Menglong Lu · Zhenjun Ma |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 390 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Adaptive model-based optimal control for deep borehole GSHP systems was first studied. |
语言:
中文摘要
摘要 与传统的深孔地源热泵(DB-GSHP)系统相比,将潜热储能(LHTES)和钻孔被动加热集成到DB-GSHP系统中,在实现节能和提高需求灵活性方面具有更大的潜力。本研究提出了一种针对集成LHTES和被动加热的混合式DB-GSHP系统的自适应模型预测最优控制策略。该最优控制问题通过自适应性能模型、分位数回归、在线辨识和遗传算法(GA)进行求解,以确定混合系统的最优控制参数。为预测系统能耗性能,本文提出了针对深孔换热器(DBHE)、LHTES储罐和热泵的新型自适应模型,并采用带自适应遗忘因子的递推最小二乘估计算法持续更新模型参数。将分位数回归技术与GA优化器相结合,动态缩小决策变量的搜索空间。所提出的控制策略通过协同仿真方法,并结合两个基准场景进行了测试。结果表明,面向DBHE控制的自适应模型结合离散传递函数和在线辨识技术,能够有效预测动态工况下钻孔出口温度。通过引入分位数回归模型,GA优化器的平均计算成本降低了32.9%。在供暖季期间,与基准控制策略相比,所提出的控制策略使集成系统实现了11.9%的节能和11.5%的电力成本节约。当对两种系统均应用所提出的控制策略时,与未集成LHTES的系统相比,集成LHTES的系统节省了6.4%的能耗和35.2%的电力成本。
English Abstract
Abstract Compared with conventional deep borehole ground source heat pump (DB-GSHP) systems, integrating latent heat thermal energy storage (LHTES) and borehole passive heating into the DB-GSHP system has greater potential in achieving energy savings and increasing demand flexibility. This study presented an adaptive model-based optimal control strategy for hybrid DB-GSHP systems with integrated LHTES and passive heating. The optimal control problem was solved using adaptive performance models, quantile regression, online identification, and a genetic algorithm (GA), to identify the optimal control settings of the hybrid system. To predict system energy performance, novel adaptive models for the deep borehole heat exchanger (DBHE), LHTES tanks, and heat pump were proposed, and the model parameters were continuously updated using an adaptive forgetting factor recursive least squares estimation algorithm. A quantile regression technique was integrated with a GA optimizer to dynamically narrow down the search space of the decision variables. The proposed control strategy was tested along with two benchmarking scenarios using a co-simulation approach. The results showed that the DBHE control-oriented adaptive model, combining discrete transfer functions and online identification technique, can effectively predict the outlet temperature of the borehole under dynamic working conditions. By integrating quantile regression models, the average computational costs of the GA optimizer were reduced by 32.9 %. The proposed control strategy achieved 11.9 % energy savings and 11.5 % electricity cost savings for the integrated system over a heating season with respect to a baseline control strategy. Compared to the system without LHTES, the system with integrated LHTES saved 6.4 % in energy use and 35.2 % in electricity costs, when the proposed control strategy was applied to both systems.
S
SunView 深度解读
该自适应模型预测控制技术对阳光电源ST系列储能系统具有重要借鉴价值。研究中的在线参数辨识、遗传算法优化和分位数回归降维方法,可应用于PowerTitan储能系统的多能源协调控制,实现光储热一体化场景下的成本优化。特别是自适应遗忘因子递推最小二乘算法,可集成到iSolarCloud平台的预测性维护模块,提升储能PCS在动态工况下的能量管理效率。该控制策略实现的11.9%节能和35.2%电费节省,验证了模型预测控制在需求侧响应中的商业价值,可拓展至阳光电源充电桩系统的削峰填谷应用。