← 返回
光伏发电技术 ★ 5.0

基于全光谱太阳能与热储能的固体氧化物电解池高效自适应制氢

Efficient and adaptive hydrogen production via integrated full-Spectrum solar energy and solid oxide electrolysis cells with thermal storage

作者 Jianhong Liu · Zhenyu Tian · Mingwei Sun · Xihan Chen · Longbin Qiu · Wenjia Li
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 391 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 An SOEC hydrogen production system adapted to solar fluctuations is proposed.
语言:

中文摘要

全光谱太阳能利用与固体氧化物电解池(SOECs)的集成技术为高效制氢提供了有前景的解决方案。然而,该技术的发展面临两个主要挑战:其一,太阳能提供的热能与电能供给比例与SOECs运行所需的热电需求比例之间存在不匹配;其二,太阳能输入的波动性与SOECs对温度波动耐受能力有限之间的矛盾。针对上述问题,本研究提出了一种集成热储能模块的SOEC制氢系统。该系统根据波长对太阳能进行分频利用:短波长太阳光通过光伏电池转化为电能,长波长太阳光则在反应器中转化为热能。反应器通过储存和释放多余的太阳能热量来抑制温度波动。在白天,系统利用全部太阳能电力和部分太阳能热量进行氢气生产;而在夜间,系统则切换至依靠电网电力和储存的太阳能热量持续运行,从而回收原本会损失的太阳能热量,避免额外耗电,提升系统整体效率。热力学分析表明,在综合考虑电网电力和太阳能输入的情况下,该系统的制氢效率达到54.0%,相比传统全光谱太阳能制氢系统相对提高了9.8%。此外,与传统系统相比,本方案使电网电力消耗降低了26.6%,太阳能利用效率提高了18.5%。这些结果凸显了该集成系统在提升制氢效率的同时有效应对太阳能波动性的可行性与潜力。

English Abstract

Abstract The integration of full-spectrum solar energy utilization with solid oxide electrolysis cells (SOECs) offer a promising solution for efficient hydrogen production . However, two significant challenges hinder the development of this technology: firstly, the discrepancy between the supply ratio of heat and electricity from solar energy and the demand ratio of heat and electricity for SOECs, and secondly, the conflict between the fluctuations in solar energy and the limited temperature fluctuation tolerance of SOECs. In this study, an SOEC hydrogen production system with thermal storage module is proposed to address these challenges. Solar energy is divided based on wavelength: shorter-wavelength sunlight is converted into electricity via photovoltaic cells, longer-wavelength sunlight is converted into heat in the reactor. The reactor suppresses temperature fluctuations by storing and releasing solar extra heat. During daylight hours, the system utilizes all the solar electricity and part of the solar heat to produce hydrogen . While at night, the system shifts to rely on grid power and stored solar heat for continued operation, thus recovering the otherwise lost solar heat and avoiding additional power consumption , and enhancing system efficiency. Thermodynamic evaluation shows that the system achieves an efficiency of 54.0 %, considering both grid electricity and solar energy inputs, which is relative 9.8 % higher than the traditional full-spectrum solar hydrogen production system. Additionally, compared to the traditional system, our proposed approach reduces grid power consumption by 26.6 % and increases solar energy utilization efficiency by 18.5 %. These findings underscore the viability and potential of the integrated system in enhancing hydrogen production efficiency while effectively managing solar energy fluctuations.
S

SunView 深度解读

该全光谱太阳能制氢技术对阳光电源光储融合系统具有重要启示。研究中光伏发电与热能分频利用的思路,可应用于SG系列逆变器与ST储能系统的协同优化:通过PowerTitan储能单元平抑光伏波动,配合iSolarCloud平台实现热电比动态调控。系统夜间利用储能回收余热降低26.6%电网功耗的策略,与阳光电源GFM控制技术的削峰填谷能力高度契合,可拓展至绿氢制备场景,提升新能源制氢项目的经济性与电网友好性,为1500V高压系统在工业级氢能应用提供技术方向。