← 返回
储能系统技术 ★ 5.0

利用相变储热结合自然对流与马兰戈尼对流增强昼夜温差热电能量采集效率

Thermoelectric energy harvesting from day–night temperature swings with latent heat storage: Enhancing the efficiency by combining natural and Marangoni convection

作者 Santiago Madrug · Carolina Mendoz
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 391 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Natural and Marangoni convection to enhance efficiency in thermoelectric conversion.
语言:

中文摘要

摘要 自然能源为在电池不适用的环境中为低功耗电子设备(如传感器)供电提供了一种解决方案。在这些能源中,热电转换因其能够利用温度波动发电而尤为突出。然而,其效率严重受限于自然界昼夜循环中通常较小的温差,这限制了其在依赖环境热梯度时的实际应用。通过建立真实的物理模型并开展三维数值模拟,我们证明将热电发电机与潜热储能单元耦合可显著增强自然昼夜温度波动向电能的转化效率。该效率提升得益于自然对流与马兰戈尼对流的协同传热作用。我们采用一个标准热电模块(塞贝克系数 α = 0.027),并与包含相变材料十六烷(Prandtl 数为 45.5)的储热单元相结合,系统配置的邦德数为 8。基于西欧、东欧和巴西典型的温度变化曲线,我们展示了这种增强型微能量采集器在驱动环境传感器方面的实际应用前景和广泛适用性。在24小时周期内,对于中欧、西欧和巴西的温度剖面,在16 cm³ 的储热单元中,浮力与热毛细效应共同作用下所采集的能量(平均功率密度)分别为 2.6 J(29.7 μW/cm²)、1.4 J(16.4 μW/cm²)和 2.4 J(27.2 μW/cm²)。值得注意的是,即使在该邦德数下热毛细效应较弱,相较于仅存在自然对流的情况,马兰戈尼对流仍使中欧和西欧温度剖面下的采集能量和平均功率密度提高了一倍。所采集的能量足以持续驱动用于监测湿度、压力和环境温度的低功耗传感器及其配套必要的电子电路。重要的是,该微型能量采集器利用了液体的基本物理特性:温度引起的密度变化(自然对流)和温度引起的表面张力变化(马兰戈尼对流)。这一结果的稳健性为进一步在更复杂构型下实现性能提升奠定了基础。

English Abstract

Abstract Natural energy sources are a solution to power low-consumption electronic devices, such as sensors, in environments where batteries are impractical. Among these sources, thermoelectric conversion stands out for its ability to generate power from temperature fluctuations. However, its efficiency is severely constrained by the small temperature differences typically seen during natural day–night cycles, which limits its usability when relying on ambient thermal gradients. Through realistic physical modeling and 3D numerical simulations, we demonstrate that coupling a thermoelectric generator with a latent heat storage unit significantly enhances the conversion of natural day–night temperature swings into electricity. This enhancement is achieved by combining natural and Marangoni convective heat transfer. We utilize a standard thermoelectric module (Seebeck coefficient of α = 0.027 ) paired with a heat storage unit containing the phase change material hexadecane, which has a Prandtl number of 45.5 and configured with a Bond number of 8. Using temperature profiles representative of Western Europe, Eastern Europe, and Brazil, we illustrate the practical and broad application of these enhanced micro-energy harvesters to power environmental sensors. Over a 24-hour period, the combined effects of buoyancy and thermocapillarity in a 16 cm 3 heat storage unit yield harvested energies (average power densities) of 2.6 J ( 29.7 μ W / cm 2 ), 1.4 J ( 16.4 μ W / cm 2 ), and 2.4 J ( 27.2 μ W / cm 2 ) for the temperature profiles of Central Europe, Western Europe, and Brazil, respectively. Notably, even with weak thermocapillary effects at this Bond number, Marangoni convection doubles the harvested energy and average power density for the Central and Western Europe profiles compared to natural convection alone. The harvested energy is sufficient to uninterruptly power low-consumption sensors monitoring humidity, pressure, and ambient temperature, along with the necessary accompanying electronics. Importantly, this micro-energy harvester leverages fundamental physical properties of liquids: density variation with temperature (natural convection) and surface tension variation with temperature (Marangoni convection). The robustness of these results provides a foundation for further enhancements under more complex configurations.
S

SunView 深度解读

该热电-相变储能技术为阳光电源储能系统提供创新思路。研究中昼夜温差利用与马兰戈尼对流增强机制,可启发ST系列PCS的热管理优化设计。PowerTitan等大型储能系统运行中产生显著温差,若集成微型热电模块与相变材料,可实现废热自供电,为传感器节点、监控模组提供持续电源,降低iSolarCloud平台边缘设备能耗。该技术的自然对流与表面张力协同机制,对储能柜被动散热设计具有参考价值,可提升系统能效与运维智能化水平。