← 返回
光伏发电技术
★ 5.0
太阳能和风能预测综述:从单站点到多站点范式
A review of solar and wind energy forecasting: From single-site to multi-site paradigm
| 作者 | Alessio Verdon · Massimo Panell · Enrico De Santi · Antonello Rizzi |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 392 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The paper offers a survey of single- and multi-site RES forecasting methods. |
语言:
中文摘要
摘要 能源行业正在经历一场深刻的变革,朝着主要由可再生能源构成的发电系统转型。尽管可再生能源相较于化石燃料具有诸多优势(如避免资源稀缺性和进口依赖性),但其随机性使得在缺乏适当储能系统的情况下难以保证可靠性。由于电力网络具有复杂的动态特性,多年来已发展出大量用于预测可再生能源发电量的方法。其中,机器学习与深度学习方法在该领域可被视为成功的工具。在本综述中,我们对应用于可再生能源发电预测任务的方法进行了概述,重点关注太阳能和风能。我们根据预测过程中涉及的站点数量以及时空信息的特点对这些方法进行了分类。近期研究表明,处理来自多个电站的同时性信息能够使预测系统充分利用发电站点的时间和空间知识。此外,我们还详细分析了这些实验中所使用的数据集,旨在为实验设置提供清晰统一的视角,并揭示构建用于方法比较的基准所面临的困难。本综述的目的是通过对比前沿研究中采用的方法论与技术路径,并对其进行批判性分析,向读者呈现当前最先进的可再生能源预测系统的最新全景视图。
English Abstract
Abstract The energy sector is undergoing a radical transformation towards an electricity generation system composed mainly of renewable energy sources. Although they offer several advantages compared to fossil fuels (such as scarcity and import-dependency), their stochastic nature makes them unreliable without an adequate storage system. Since electrical networks are characterized by complex dynamics, numerous methods for predicting renewable electricity production have been developed over the years. Among them, machine learning and deep learning methods in this field can be considered successful tools. In this review, we offer an overview of the methodologies applied to the task of renewable energy source forecasting, focusing on solar and wind. We classified methods depending on the number of sites and spatio-temporal information involved in the prediction. Recent research has demonstrated how the processing of simultaneous information coming from multiple plants allows the predictive system to take advantage of both temporal and spatial knowledge of the plants generating the related time series. Moreover, we have analyzed in detail the datasets employed in these experiments, to offer a clear and unified view of the experimental setups and the difficulty in producing a benchmark to compare methods. The purpose of this review is to offer the reader an updated view of the most modern renewable energy forecasting systems by comparing methodologies and approaches used in state-of-the-art research and providing a critical analysis of them.
S
SunView 深度解读
该多站点时空预测技术对阳光电源智慧运维体系具有重要价值。iSolarCloud平台可整合多个光伏电站的时空数据,通过深度学习算法提升发电功率预测精度,优化ST系列储能PCS的充放电策略。多站点协同预测能增强电网友好型GFM/GFL控制的前瞻性,降低新能源波动对电网冲击。建议将该技术融入预测性维护系统,结合SG逆变器MPPT优化与PowerTitan储能方案,构建源网荷储协调的智能调度平台,提升系统经济性与稳定性。