← 返回
储能系统技术 ★ 5.0

结合PNN分类与ELM-Bootstrap的日前负电价预测增强方法

Integrating PNN classification and ELM-Bootstrap for enhanced Day-Ahead negative price forecasting

作者 Stylianos Loizidis · Venizelos Venizelou · Andreas Kyprianou · G. E. Georghiou
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 392 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Addresses the task of forecasting negative electricity prices.
语言:

中文摘要

摘要 负电价通常在电力供应过剩时发生,常由高比例可再生能源发电以及传统发电机组灵活性不足所驱动。在缺乏充足储能能力的情况下,电网必须吸收多余的电量,从而导致价格跌破零。准确预测此类事件至关重要,但现有文献中专门针对负电价预测的有效解决方案仍较为有限。本文提出一种新颖的两阶段混合方法,用于预测日前电力市场中的负电价。第一阶段采用极限学习机(Extreme Learning Machine, ELM)结合Bootstrap方法生成预测区间;第二阶段利用概率神经网络(Probabilistic Neural Network, PNN)将目标日分类为负电价日或正电价日,并引入基于市场的误分类成本,以反映不同电价方向所带来的差异化经济影响。最终的预测值选择取决于PNN的分类结果:若PNN预测为负电价日,则采用ELM-Bootstrap预测区间的下界作为预测值;若预测为正电价日,则取该区间的平均值。本文将PNN分类器与径向基函数核支持向量机(SVM-RBF)、极端梯度提升(XGBoost)以及长短期记忆网络(LSTM)模型进行对比,实验结果表明PNN在分类准确性方面表现更优。此外,所提出的混合方法在预测精度上也优于单独使用的ELM-Bootstrap方法。该方法应用于德国日前电力市场,使用2020年至2023年的实际数据进行验证,这一时期市场波动剧烈,进一步证明了该方法在真实市场环境下的有效性。

English Abstract

Abstract Negative electricity prices occur under oversupply conditions, often driven by high renewable generation and the limited flexibility of conventional power units. Without sufficient energy storage, surplus electricity must be absorbed by the grid, leading to price drops below zero. Accurate forecasting of such events is critical, yet current literature offers limited solutions focused specifically on negative price prediction. This paper proposes a novel two-stage hybrid methodology for forecasting negative Day-Ahead electricity prices. In the first stage, an Extreme Learning Machine combined with the Bootstrap method generates prediction intervals. In the second stage, a Probabilistic Neural Network classifies the target day as either a negative or positive price day, incorporating market-based misclassification costs to reflect the differing economic impacts of price directions. The final forecast selection depends on the PNN outcome: if a negative price is predicted, the lower bound of the ELM-Bootstrap interval is used; if positive, the average is taken. The PNN classifier is benchmarked against Support Vector Machine with an RBF kernel, Extreme Gradient Boosting, and Long Short-Term Memory models, demonstrating superior classification accuracy . The proposed hybrid approach also outperforms the standalone ELM-Bootstrap method in forecasting precision. The methodology is applied to the German Day-Ahead market using data from 2020 to 2023, a period marked by high market volatility, validating its effectiveness under real-world conditions.
S

SunView 深度解读

该负电价预测技术对阳光电源储能系统具有重要应用价值。通过ELM-Bootstrap区间预测与PNN分类的两阶段方法,可精准识别负电价时段,为ST系列PCS和PowerTitan储能系统提供智能充放电决策依据。结合iSolarCloud平台集成该预测算法,可在高比例新能源场景下优化储能调度策略:负电价时段低价充电,正常时段高价放电,显著提升储能系统经济效益。该方法在德国市场的验证表明其适用于高波动性电力市场,可赋能阳光电源储能产品在欧洲等成熟电力市场的套利能力和竞争力。