← 返回
储能系统技术 ★ 5.0

基于新型三维光-电-热模型的直连式光伏电解系统的氢气生产性能优化

Hydrogen production performance optimization for direct-coupled photovoltaic electrolysis systems based on a novel 3D opto-electro-thermal model

作者 Hao Wang · Weiding Wang · Chuanjie Lin · Yongquan Lai · Changchen Li · Ziyou Xu · Yuanbo Yang · Yimin Yang · Wenxuan Dong · Jinzhan Su
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 392 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel 3D opto-electro-thermal coupling model.
语言:

中文摘要

摘要 光伏驱动的电解系统是实现大规模可再生能源储存的一种有前景的方法,其中直连式系统在降低系统复杂性和成本方面具有显著优势。然而,由于结构设计和流量控制策略的次优选择,这类系统中的光伏(PV)模块与电解(EC)模块之间可能存在失配问题,从而显著降低氢气生产性能。尽管数值模拟有望解决上述问题,但现有的低维模型通常基于空间均匀性的假设,过于简化,难以充分捕捉此类复杂系统中光学、热学、电学以及气液流动现象之间的 intricate 耦合机制。本研究针对直连式系统提出了一种新型三维光-电-热模型,该模型在每个网格单元内采用半导体漂移-扩散方程和气液两相流模型,能够更精确地描述多物理场耦合行为。该先进模型有助于在优化基本系统结构(PV-EC)过程中进行全面的性能评估,包括对集成光伏/热(PV/T)和基于接触式传热设计等新型系统构型的评价。此外,该模型还可通过优化电解池膜电极组件(MEA)与光伏模块之间的相对尺寸配置,实现流量控制策略的简化。结果表明,PV/T-EC非热集成结构实现了最高的太阳能到氢能转换效率(STH)。进一步发现,当相对尺寸设置为2.25%时,在真实波动工况下,即使在较宽范围内维持流量而无需精确控制,仍可获得优异且稳定的STH性能,从而有效简化流量控制策略。本研究结果可为优化直连式光伏电解系统的结构设计和流量控制策略以提升氢气生产性能提供理论指导。

English Abstract

Abstract Photovoltaic-powered electrolysis systems represent a promising approach for large-scale renewable energy storage , with direct-coupled systems offering particular advantages in terms of reduced system complexity and cost. However, a mismatch issue between photovoltaic (PV) and electrolysis (EC) modules of these systems could be caused by suboptimal structural design and flow rate control strategies, leading to a significant reduction in hydrogen production performance. While these problems could potentially be addressed through numerical simulation, existing low-dimension models are overly simplified due to the assumptions of spatial homogeneity, failing to adequately capture the intricate coupling mechanisms among optical, thermal, electrical and gas-liquid flow phenomena in these complex systems. In this study, a novel 3D opto-electro-thermal model has been developed for direct-coupled systems, utilizing semiconductor drift-diffusion equations and a gas-liquid two-phase flow model within each grid cell. This advanced model facilitates comprehensive performance assessments during the optimization of the fundamental system structure (PV-EC), including the evaluation of novel system configurations that integrate photovoltaic/thermal (PV/T) and contact-based thermal designs. Additionally, it could help to streamline flow rate control by optimizing the relative sizing between the membrane electrode assembly (MEA) of EC and PV modules . The results demonstrate that the PV/T-EC Non-thermal integration structure achieves the maximum Solar-to-Hydrogen efficiency ( STH ). Moreover, by setting the relative sizing at 2.25 %, maintaining the flow rate in a wide range without precise control could be sufficient to achieve outstanding and stable STH under real-world fluctuating conditions. This allows the flow rate control strategy to be effectively streamlined. The findings could provide guidance for optimizing hydrogen production performance by refining system structure and flow rate control strategy in direct-coupled photovoltaic electrolysis systems.
S

SunView 深度解读

该3D光电热耦合模型对阳光电源光伏制氢系统开发具有重要价值。研究揭示的PV-EC直连架构优化方法可指导SG系列逆变器与电解设备的功率匹配设计,其宽范围流量控制策略可简化系统控制复杂度。PV/T热集成方案与阳光电源储能系统的热管理技术协同,可提升太阳能制氢效率(STH)。建议将多物理场耦合仿真能力融入iSolarCloud平台,实现光伏制氢系统的智能优化与预测性运维,拓展绿氢领域新能源解决方案。