← 返回
风电变流技术 ★ 5.0

PEM电解槽动态需求响应调度的实验验证

Experimental demonstration of dynamic demand response scheduling for PEM-electrolyzers

作者 Roger Keller · Florian Joseph Baader · Andre Bardow · Martin Muller · Ralf Peters
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 393 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Enhanced economic viability of PEM electrolyzers under fluctuating electricity market conditions.
语言:

中文摘要

摘要 预计可再生能源(如风能和光伏发电)的使用将导致电价出现波动。这种波动为质子交换膜(PEM)电解槽提供了降低成本的机会,因为它们能够快速调整产氢速率。此外,电解槽通常较慢的温度动态特性进一步增强了其在有效运行管理策略中的灵活性。在调度优化过程中设定温度轨迹,可实现电解槽在一定时间内的过载运行。然而,温度动态通常具有非线性特征,结合离散的启停决策,会导致混合整数非线性优化问题,这类问题在实时求解时极具挑战性。本研究通过实验验证了一种动态爬坡调度优化方法,该方法采用基于微分平坦性的坐标变换,对非线性温度动态进行精确线性化处理。利用动态调度优化所提供的信息,本文对一台100 kW的PEM电解槽进行了运行实验,研究了三种电堆温度控制方法,并抑制了由负载变化引起的干扰。确定一种合适的控制方法对于保证优化所期望的温度跟踪性能至关重要。实验结果表明,与不采用过载运行的基准方案相比,成本降低了3.8%。所设计的PEM电解槽模型在成本计算上与实际实验结果仅偏差0.6%。通过对PEM电解过程在2 MW规模上的仿真扩展分析表明,采用动态爬坡方法可实现更高的成本节约,原因是更大规模的电解槽具有更缓慢的动态特性。

English Abstract

Abstract The use of renewable energy sources, such as wind power and photovoltaics is expected to produce fluctuating electricity prices. These fluctuations give PEM electrolyzers the opportunity to reduce costs, as they can adapt their production rates rapidly. Moreover, typically slow temperature dynamics of electrolyzers increase their flexibility for effective operational management strategies. With a defined temperature trajectory during scheduling optimization, overload operation of the electrolyzer for a given amount of time is possible. However, the temperature dynamics are typically nonlinear. In conjunction with discrete on/off decisions, temperature dynamics lead to mixed-integer nonlinear optimization problems for scheduling that are highly challenging to solve in real time. In this study, we experimentally validate the dynamic ramping scheduling optimization method that precisely linearizes nonlinear temperature dynamics using a flatness-based coordinate transformation. Utilizing the available information from the dynamic scheduling optimization a 100 kW PEM electrolyzer was operated by studying three stack temperature control methods, rejecting disturbances from load variations. Identifying a suitable control method was essential to guarantee the desired temperature tracking performance of the optimization. Our experiments show a 3.8 % cost reduction compared to the benchmark without overload operation. The designed PEM electrolyzer model also deviated only 0.6 % in costs from the experiment. Simulative scaling of PEM electrolysis to 2 MW demonstrates even higher cost reductions with the dynamic ramping method, as the larger electrolyzer has slower dynamics.
S

SunView 深度解读

该PEM电解制氢动态调度技术对阳光电源储能及新能源系统具有重要借鉴价值。研究中的非线性温度动态线性化方法可应用于ST系列PCS的热管理优化,通过精确建模实现过载运行策略,提升系统经济性3.8%。混合整数优化算法可集成至iSolarCloud平台,实现光伏-储能-制氢耦合系统的实时调度。扁平化坐标变换思路启发PowerTitan等大容量储能系统的温控策略设计,利用热惯性拓展运行边界。该方法与阳光电源GFM控制、虚拟同步机技术结合,可构建源网荷储氢一体化智慧能源解决方案,应对新能源波动性挑战。