← 返回
光伏发电技术 ★ 5.0

增强季节性,优先气象:基于双层分层注意力机制强化光伏发电预测中的季节相关性

Amplify seasonality, prioritize meteorological: Strengthening seasonal correlation in photovoltaic forecasting with dual-layer hierarchical attention

语言:

中文摘要

摘要 电力输出超过电网承载能力对电网安全构成严重威胁。2023年,光伏发电占可再生能源发电总增量的75%。然而,由于光伏发电输出存在显著波动,准确预测发电量已成为保障电网安全的关键手段。在实际应用中,一个关键挑战在于如何深度挖掘光伏发电数据中的隐含特征,并厘清其与气象数据之间的关联,以提升预测精度。针对这一问题,本研究提出了一种名为“增强季节性,优先气象”的光伏发电预测策略。该策略旨在利用气象信息与光伏发电数据的季节性成分建立关联,同时防止气象因素干扰趋势性成分,从而有效降低短期季节性气象波动对光伏发电数据趋势成分的影响。此外,本研究设计了一个具有双层分层注意力机制的季节性成分预测单元,增强了模型对气象特征、关键时间节点与季节性成分之间关联性的关注。上述创新使得所提出的AspmNet模型实现了更优的预测精度。通过采用澳大利亚光伏发电数据进行实验验证,分别在1天、2天和4天的预测时长下进行了测试。在平均绝对误差(Mean Absolute Error)指标上,该模型相较其他基准模型提升了超过10%。

English Abstract

Abstract Overloading beyond the grid’s capacity poses a serious threat to grid security. In 2023, photovoltaic power generation accounted for 75 % of the total increase in renewable energy generation . However, due to the significant fluctuations in photovoltaic power output, forecasting photovoltaic generation has become a crucial tool for ensuring grid security. A key challenge in practical applications remains the deep mining of hidden features in photovoltaic data and their correlation with meteorological data to improve prediction accuracy. To address this, this study proposes a photovoltaic prediction strategy called “Amplify Seasonality , Prioritize Meteorological". This strategy aims to leverage meteorological information to connect with the seasonal component of photovoltaic power data while preventing meteorological factors from affecting the trend component, thereby effectively reducing the impact of short-term seasonal meteorological fluctuations on the trend component of photovoltaic data. Additionally, this study proposes a seasonal component prediction unit with a dual-layer hierarchical attention mechanism, which enhances the focus on the connections between meteorological features, key time nodes, and the seasonal component. These innovations enable the proposed AspmNet model to achieve superior prediction accuracy. The model was validated using Australian photovoltaic data through experiments with forecast lengths of 1 day, 2 days, and 4 days. In terms of Mean Absolute Error , the model demonstrated over a 10 % improvement compared to other benchmark models.
S

SunView 深度解读

该双层分层注意力机制的光伏预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过'放大季节性、优先气象'策略深度挖掘气象与光伏数据关联,可显著提升SG系列逆变器功率预测精度超10%,优化MPPT控制策略。该技术可集成至ST储能系统的能量管理算法,实现光储协同预测调度,有效应对光伏波动对电网安全的威胁。建议将季节性分解机制应用于预测性维护模块,提升电站发电量预测准确性,为GFM/GFL控制策略提供更可靠的前瞻性数据支撑。