← 返回
风电变流技术
★ 5.0
考虑虚拟与实际概念漂移检测的风电功率在线概率密度预测
Online probability density prediction of wind power considering virtual and real concept drift detection
| 作者 | Yaoyao Heab · Nana Yuac · Bo Wangd |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 396 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Proposing solutions to concept drift in wind power forecasting. |
语言:
中文摘要
摘要 风能等可再生能源具有固有的波动性,使得准确预测对于电力系统的有效运行至关重要。然而,风电数据内在的波动性和变异性常常导致概念漂移现象,从而削弱预测精度,并对电力系统运行带来显著挑战。为解决这一问题,本文提出一种结合在线漂移检测与自适应机制的分位数回归长短期记忆网络方法(O-DDA-QRLSTM),用于风电功率的概率性预测。该方法采用QRLSTM实现风电功率的分位数预测,并引入在线学习机制以检测数据流中的概念漂移。针对虚拟漂移和实际漂移分别设计了不同的检测策略:利用数据分布变化的Kullback-Leibler(KL)散度检测虚拟漂移,利用模型预测结果的连续排序概率评分(CRPS)变化检测实际漂移。当检测到漂移时,模型参数将被更新以学习数据流中的新特征,并采用核密度估计(KDE)获得风电功率的概率密度预测结果。对比实验结果表明,所提出的方法能够有效应对概念漂移问题,实现对未来风电功率的概率密度预测,从而降低未来信息的不确定性。
English Abstract
Abstract Renewable energy sources such as wind are inherently variable, making accurate prediction crucial for effective power system operation . However, the inherent volatility and variability in wind power data often result in concept drift, which undermines prediction accuracy and poses significant challenges to power system operation. To address this issue, this paper proposes an online drift detection and adaption combined with quantile regression long short-term memory network (O-DDA-QRLSTM) for probabilistic wind power prediction. This method uses QRLSTM for quantile prediction of wind power and incorporates online learning to detect concept drift in the data stream. Different detection methods are developed for virtual drift and real drift. Kullback-Leibler (KL) divergence of data distribution changes to detect virtual drift and the changes in the Continuous Ranked Probability Score (CRPS) of model predictions to detect real drift. The model parameters are updated to learn new features in the data stream, and Kernel Density Estimation (KDE) is employed to obtain probabilistic density prediction results. Comparison results show that the proposed method effectively handles concept drift and achieves probabilistic density prediction of future wind power, thereby reducing the uncertainty of future information.
S
SunView 深度解读
该在线概率密度预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过虚拟与真实概念漂移检测,可显著提升风储协同场景下的功率预测精度和系统调度能力。建议将KL散度与CRPS评分机制集成至iSolarCloud平台,实现风电波动的实时预测与储能系统的动态响应优化。该方法可增强GFM控制策略的鲁棒性,降低新能源并网不确定性,为大规模风储项目提供智能预测性维护支撑,提升系统经济性与电网友好性。