← 返回
光伏发电技术 ★ 5.0

PVMTF:基于块技术与信息融合编码的端到端长序列时间序列预测框架用于中期光伏发电预测

PVMTF: End-to-end long-sequence time-series forecasting frameworks based on patch technique and information fusion coding for mid-term photovoltaic power forecasting

作者 Zhirui Tiana · Bingjie Liang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 End-to-end learning framework for accurate mid-term photovoltaic power forecasting.
语言:

中文摘要

准确的光伏发电功率预测能够缓解其对电网稳定性的不利影响。目前大多数光伏发电预测模型依赖于增加模型复杂度或扩大回溯窗口尺寸以提升所提取信息的量,但这往往导致已学习信息的灾难性遗忘或引入过多冗余噪声。此外,一些模型通过分解数据并采用非端到端的学习方式进行预测,可能导致信息不一致和误差累积,从而限制了预测精度的进一步提升。为应对上述挑战,本文提出了一种端到端的PVMTF预测框架,包含PatchGRU和PatchGRU_h两种模型。本研究分为两个模块:在数据预处理模块中,采用孤立森林(Isolation Forest)进行异常值检测,并使用窗口均值替代异常值;利用灰色关联分析(Grey relational analysis)进行特征选择,以降低训练复杂度。在光伏发电功率预测模块中,采用PVMTF框架直接实现光伏发电功率的预测。首先,基于块(patch)技术将原始数据划分为独立的短片段进行分段学习,从而有效保留并学习历史信息,避免随着回溯窗口增长而导致的重要已学信息的灾难性遗忘。具体而言,针对每个数据块,引入参数共享或独立参数训练的门控循环单元(GRUs),以适应不同的计算需求,提取块内特征并实现特征融合。随后,引入基于神经网络的门控机制,对隐藏状态进行非线性学习并融合信息。最后,基于上述信息融合编码,通过挖掘各数据块之间的关联关系,实现精确的光伏发电功率预测。严格的数值实验验证表明,PVMTF在三种光伏发电预测任务(单步预测、384步(提前4天)和672步(提前7天))中均优于多种当前最先进的(SOTA)时间序列预测模型,为光伏发电的管理与调度提供了有效的工具。

English Abstract

Abstract Accurate photovoltaic power forecasting can alleviate the impact on grid stability. Most existing photovoltaic power prediction models rely on increasing model complexity or increasing the size of the look-back window to expand the amount of extracted information, but this often leads to catastrophic forgetting of learned information or the introduction of excessive redundant noise. In addition, some models predict by decomposing data and using non end-to-end learning, which may lead to inconsistent information and cumulative errors, limiting the improvement of prediction accuracy. To address the aforementioned challenges, we propose end-to-end PVMTF frameworks consisting of two models, PatchGRU and PatchGRU_h. This study is divided into two modules. In the data preprocessing module, we use Isolation Forest for outlier detection and replace outliers with window averages. Grey relational analysis is used for feature selection to reduce training complexity. In the photovoltaic power forecasting module, the PVMTF frameworks are used to directly achieve photovoltaic power forecasting. Firstly, based on the patch technique, the data is divided into independent short patches for separate learning, which can effectively preserve and learn historical information, avoiding catastrophic forgetting of important information that has already been learned as the look-back window grows. Specifically, for each patch, parameter sharing or independent parameter training Gated Recurrent Units (GRUs) are introduced to adapt to different computing needs, extract features within the patches, and achieve feature fusion . Next, a neural network-based gating mechanism is introduced to nonlinearly learn hidden states and fuse information. Finally, based on the above information fusion coding, accurate photovoltaic power forecasting is achieved by extracting the relationships between patches. Strict numerical verification indicates that PVMTF outperforms various state-of-the-art (SOTA) time series forecasting models in the three PV forecasting tasks (1-step, 384-step (4 days-ahead) and 672-step (7 days-ahead)), which provides an effective tool for PV power management and dispatch.
S

SunView 深度解读

该PVMTF端到端光伏功率预测框架对阳光电源iSolarCloud智慧运维平台具有重要应用价值。其基于patch技术的长序列预测能力可显著提升4-7天中期功率预测精度,有效支撑SG系列逆变器集群的发电调度优化。通过灰色关联分析的特征选择可降低计算复杂度,适配边缘侧部署。该技术可与ST系列储能PCS协同,实现光储联合调度的预测性维护,提升电网稳定性。端到端学习架构避免信息累积误差,为PowerTitan等大型储能系统的能量管理策略优化提供高精度数据支撑,助力构建更智能的新能源调度体系。