← 返回
风电变流技术 ★ 5.0

一种提高并网风电-水电系统实时运行灵活性的新型两阶段框架

A novel two-stage framework to improve the flexibility of grid connected wind-hydro power system in real-time operation

作者 Chunyang Lai · Behzad Kazemtabriz
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A scenario-based two-stage connection node decision model improving the topology relationship between power plants and demands is proposed to improve the flexibility of the WHGS.
语言:

中文摘要

摘要 风电-水电混合发电系统已被证明是促进波动性风电并网的一种可行方案。然而,很少有研究考虑风电-水电系统与电力系统的联合运行,更少的研究进一步延伸至提升并网风电-水电系统(WHGS)在实时运行中的灵活性,以应对风电出力和负荷需求双重波动性与不确定性加剧所导致的切负荷问题。为弥补这一研究空白,本文提出了一种新型两阶段框架。在该框架的第一阶段(F-first stage),提出一种基于场景的两阶段连接节点决策模型,用于优化风电场、水电站与负荷之间的拓扑连接关系。在第二阶段(F-second stage),构建一种两阶段双层灵活性短缺风险规避模型,旨在实时运行中动态降低当前时段的切负荷量,并缓解下一时间段的灵活性短缺风险。随后嵌套一个双层资源节约模型,对WHGS进行重新调度以实现资源节约。最后,所有模型均被重构为混合整数线性规划(MILP)形式。案例研究表明:(1)改善电源与负荷之间的拓扑连接关系可减轻输电线路容量不足的影响,从而增强WHGS的灵活性;(2)实时灵活性提升模型能够显著增强WHGS的灵活性,最终在实时运行中大幅减少切负荷量(降低39.82%);即使在输电容量较低的情况下(切负荷减少2.58%)、发电能力较低的情况下(切负荷减少7.93%)以及置信水平较低的情况下(切负荷减少15.82%),该模型仍表现出良好的有效性;(3)置信水平的选择取决于具体场景条件及系统运行人员的运行偏好。

English Abstract

Abstract The wind-hydro hybrid power system has been proven to be a viable solution in helping integrate variable wind power into the grid. While few studies consider the joint operation of the wind-hydro power system with the power grid, even fewer extend the research to improve the flexibility of the grid connected wind-hydro power system (WHGS) in real-time operation, aiming to reduce the load shedding in the face of increasing fluctuations and uncertainties from both wind power and demand. To address this gap, a novel two-stage framework is proposed. In the first stage of the framework (F-first stage), a scenario-based two-stage connection node decision model is proposed to improve the topology relationship between the wind power plant, hydropower plant and demands. In the second stage of the framework (F-second stage), a two-stage bilevel flexibility shortage risk averse model is proposed to dynamically decrease the load shedding during the current time period and mitigate flexibility shortage risks for the following time period in real-time operation. Then, a bilevel resource saving model is nested to reschedule the WHGS to conserve resources. Finally, all models are reformulated as MILPs. The case study shows that (1) improving the topology relationship between power plants and demands can decrease the impact of insufficient transmission line capacity and enhance the flexibility of WHGS; (2) the real-time flexibility improvement model can enhance the flexibility of WHGS and ultimately reduce load shedding (by 39.82 %) in real-time operation. It performs effectively even under low power transmission capacity (reducing load shedding by 2.58 %), low generation capacity (reducing load shedding by 7.93 %), and low confidence level (reducing load shedding by 15.82 %); (3) the choice of confidence level depends on the scenario conditions and operational preferences of the system operator.
S

SunView 深度解读

该风-水-电网联合调度框架对阳光电源ST系列储能变流器和PowerTitan系统具有重要借鉴价值。研究提出的两阶段实时灵活性优化模型,可应用于储能系统替代水电参与风电波动平抑,通过拓扑优化和双层调度降低弃风弃负39.82%。其场景化决策和灵活性风险规避机制,可融入iSolarCloud平台的智能调度算法,提升风储协同系统在输电容量受限场景下的实时响应能力,为构网型储能(GFM)控制策略提供上层优化框架,增强新能源并网柔性。