← 返回
储能系统技术
★ 5.0
面向提升能效与电池寿命的网联自动驾驶电动汽车综合功率与热管理
Integrated power and thermal management for enhancing energy efficiency and battery life in connected and automated electric vehicles
| 作者 | Dongjun Lia · Qiuhao Hub · Weiran Jiang · Haoxuan Donga · Ziyou Songa |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 396 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel strategy is proposed that optimizes multi-objectives without parameter tuning. |
语言:
中文摘要
摘要 在网联自动驾驶电动汽车中,有效的功率与热管理因车辆纵向运动与电池热系统之间多时间尺度动态特性,以及能效、电池老化和驾驶安全之间的复杂权衡而面临重大挑战。本文提出了一种基于多时域模型预测控制框架的综合功率与热管理(IPTM)策略,专门设计用于克服上述挑战并实现在线实时应用。所提出的IPTM策略能够利用环境温度、道路坡度和前车速度等实时信息,主动优化电池温度和车辆速度,确保在不同驾驶工况下的高效运行。结果表明,与基准方案相比,该策略显著提升了性能,冷却能耗降低了14.22%,牵引能耗降低了8.26%,电池老化程度减少了22.00%,且电池单体间的老化不一致性下降了36.57%。此外,每步平均计算时间为0.34秒,短于采样周期,满足实时应用的可行性要求。对关键参数(如权重因子、采样时间和预测时域)的敏感性分析进一步验证了IPTM策略的鲁棒性,强化了其在实际应用中的部署潜力。
English Abstract
Abstract Effective power and thermal management in Connected and Automated Electric Vehicles presents significant challenges due to the multi-timescale dynamics of vehicle longitudinal motion and battery thermal systems, as well as the intricate trade-offs among energy efficiency, battery degradation, and driving safety. This paper proposes an integrated power and thermal management (IPTM) strategy based on the multi-horizon model predictive control framework, specifically designed to overcome these challenges and enable real-time implementation. The proposed IPTM can leverage real-time information, such as ambient temperature, road slope, and preceding vehicle speed, to proactively optimize battery temperature and vehicle speed, ensuring efficient performance under varying driving conditions. The results demonstrate that the proposed strategy delivers significant improvements, including reductions of 14.22 % in cooling energy, 8.26 % in traction energy, 22.00 % in battery degradation, and 36.57 % in battery degradation inconsistency across cells compared to the benchmark. Furthermore, the mean computation time per step is 0.34 s shorter than the sampling time, ensuring feasibility for real-time application. Sensitivity analyses of key parameters—such as weighting factors, sampling time, and prediction horizons further underscore the robustness of the IPTM strategy and reinforce its potential for practical deployment.
S
SunView 深度解读
该多时间尺度功率-热管理技术对阳光电源EV充电桩及储能系统具有重要价值。其多层预测控制框架可应用于ST系列PCS的电池热管理,通过实时环境温度和负载预测优化冷却策略,降低14.22%冷却能耗。该策略在电池退化管理方面减少22%衰减,可增强PowerTitan储能系统全生命周期经济性。多时域协同优化思路亦可启发充电站功率调度与电池包热管理的集成控制,提升iSolarCloud平台预测性维护能力,实现0.34秒计算周期满足实时控制需求。