← 返回
基于实时TRNSYS-Python耦合的电池与热能储能太阳能区域能源系统多方法优化
Multi-method optimization of solar district energy systems with battery and thermal energy storage via real-time TRNSYS-Python coupling
| 作者 | Ruslan Kotegov · Mohamed Abokersh · Carles Mateu · Adedamola Shobo · Dieter Boera · Manel Vallès |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A hybrid multi-method approach optimizes Solar District Energy Systems (SDES). |
语言:
中文摘要
向可持续能源转型对于实现能源系统的脱碳至关重要。太阳能区域能源系统(SDES)为替代化石燃料提供了可行方案,但在成本、间歇性以及优化方面仍面临挑战。本研究提出了一种高保真度、完全自动化的SDES优化框架,该框架将TRNSYS仿真与基于Python的动态控制器相结合,协同最小化生命周期成本和环境影响。其核心创新在于采用混合多方法策略——结合元启发式、启发式与随机算法——在无需依赖代理模型或人工干预的情况下,实现仿真与优化之间的无缝实时耦合。一个特征重要性评分(FIS)模块自适应地优先处理关键变量,从而提高收敛效率并降低计算成本。该框架应用于一个真实的地中海地区案例研究,评估光伏、电池及热储能系统在经济性和环境性双重标准下的集成性能。结果表明,所提出的SDES实现了超过90%的太阳能占比,确保了长期可持续性并极大减少了对化石燃料的依赖。最具成本效益的方案使运行成本降低了66.7%,在整个系统生命周期内总成本降至7080万欧元,而环境最优配置则使基准环境影响降低了29.8%。敏感性分析显示,电价对成本和系统规模具有显著影响,而天然气价格的影响则微乎其微。总体而言,该方法相较于传统的确定性方法或基于代理模型的方法表现出显著改进,展示了其在低碳城市区域中支持可扩展、高性价比能源规划的巨大潜力。
English Abstract
Abstract Transitioning to sustainable energy is vital for decarbonizing energy systems. Solar District Energy Systems (SDES) offer a viable alternative to fossil fuels, but face challenges related to cost, intermittency, and optimization. This study proposes a high-fidelity, fully automated optimization framework for SDES that integrates TRNSYS simulations with a dynamic Python-based controller to jointly minimize life cycle cost and environmental impact. The core innovation lies in the seamless, real-time coupling of simulation and optimization using a hybrid multi-method strategy – combining metaheuristic, heuristic, and stochastic algorithms – without reliance on surrogate models or manual intervention. A Feature Importance Scoring (FIS) module adaptively prioritizes influential variables, enabling efficient convergence and reduced computational cost. The framework is applied to a real Mediterranean case study, assessing PV, battery, and thermal storage integration under economic and environmental criteria. Results show that the proposed SDES achieves a solar fraction above 90 %, ensuring long-term sustainability with minimal fossil fuel reliance. The most cost-effective solution cuts operating costs by 66.7 %, reaching €70.8 million over the system's lifetime, while the environmentally optimal configuration lowers the baseline environmental impact by 29.8 %. Sensitivity analysis reveals that electricity prices strongly influence cost and system sizing, whereas natural gas prices have minimal effect. Overall, the method yields significant improvements over traditional deterministic or surrogate-based approaches, demonstrating its potential to support scalable, cost-effective energy planning in low-carbon urban districts.
S
SunView 深度解读
该研究的TRNSYS-Python实时耦合优化框架对阳光电源ST系列储能变流器与SG系列光伏逆变器的协同控制具有重要参考价值。其多算法混合优化策略可应用于PowerTitan储能系统的容量配置与能量管理,通过特征重要性评分模块实现光储系统全生命周期成本优化。研究中90%以上太阳能利用率的案例验证了光储一体化方案的经济性,可为iSolarCloud平台的智能调度算法提供优化思路,支撑区域级微网解决方案的成本效益分析与环境影响评估能力提升。