← 返回
光伏发电技术
★ 5.0
可再生能源驱动的膜技术:集成太阳辐照度预测用于光伏驱动苦咸水淡化系统的预测控制
Renewable energy powered membrane technology: Integration of solar irradiance forecasting for predictive control of photovoltaic-powered brackish water desalination system
| 作者 | Martin Ansong · Emmanuel O.Ogunniyi · Blanca Pérez Jiméneza1 · Bryce S.Richards |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Karlsruhe low-cost all-sky imager (KALiSI) forecasts solar irradiance 2 − 15 min ahead. |
语言:
中文摘要
摘要 太阳辐照度(SI)的波动会扰乱光伏(PV)发电系统的输出功率,导致直接耦合的光伏驱动膜法脱盐系统出现运行不稳定和非预期停机,从而降低产水率、水质和能源效率。传统的基于储能的缓解策略会增加系统成本和复杂性。基于天空成像的SI预测技术能够分析天空状况,并提供长达15分钟的SI预测,为减少功率波动影响提供了替代方案,且无需过度依赖储能系统。本研究将一种基于图像的太阳辐照度预测系统(SIFS)集成至一套光伏驱动的苦咸水脱盐系统中。该SIFS采用卷积神经网络-长短期记忆(CNN-LSTM)模型,利用低成本天空成像仪(KALiSI)获取的图像进行训练,实现对未来2至15分钟SI值的预测。预测结果被用于控制一个电磁阀,在光伏功率突然大幅下降(即“功率陡降”)期间临时旁通背压阀,防止水泵停机。系统在晴天、部分多云和阴天条件下进行了实验性能评估。使用5分钟预测时,在阴天情况下的停机次数从12次减少到2次,日产量提高了5%。在更具挑战性的部分多云天气下,停机次数从11次降至9次,产量提升了2%。更长的预测时间范围进一步减少了停机次数并优化了能源效率,在15分钟预测范围下实现了最低的单位能耗。所有预测时间范围内,出水水质保持稳定。基于SIFS的方法增强了光伏驱动膜系统的运行稳定性与能效,表明预测控制策略在缓解系统停机问题中的重要作用。
English Abstract
Abstract Solar irradiance (SI) fluctuations disrupt photovoltaic (PV) power output, causing instabilities and unwanted shut-downs in directly-coupled PV-powered membrane desalination systems, reducing production rates, water quality, and energy efficiency. Conventional energy storage-based mitigation strategies increase costs and system complexity. Sky-imaging-based SI forecasting can analyse sky conditions and produce SI forecasts up to 15-min ahead, offering an alternative to minimise power fluctuation effects without extensive reliance on storage systems. In this study, an image-based SI forecasting system (SIFS) was integrated into a PV-powered brackish water desalination system. The SIFS employs a convolutional neural network-long short-term memory (CNN-LSTM) model, trained on images from a low-cost sky imager (KALiSI) to forecast SI values 2–15 min ahead. The forecasts were used to control a solenoid valve that temporarily bypasses the backpressure valve during periods of high sudden drops in PV power, often referred to as ramps, preventing pump shut-downs. System performance was experimentally evaluated under sunny, partly cloudy, and cloudy weather conditions. With the 5-min forecast, shut-downs on very cloudy days were reduced from 12 to two, increasing daily production by 5 %. On more challenging partly cloudy days, shut-downs fell from 11 to 9, with a 2 % production increase. Longer forecasting horizons further minimised shut-downs and optimised energy efficiency, with the lowest specific energy consumption at the 15-min horizon. Water quality remained consistent across all forecast horizons. The SIFS-based approach enhanced the PV-powered membrane system stability and efficiency, demonstrating the importance of predictive control strategies for mitigating shut-downs.
S
SunView 深度解读
该光伏预测控制技术对阳光电源SG系列逆变器与ST储能系统集成具有重要价值。研究通过CNN-LSTM模型实现15分钟光照预测,可与我司MPPT优化算法协同,提升直驱式光伏系统稳定性。建议将天空成像预测技术集成到iSolarCloud平台,结合VSG虚拟同步发电机控制策略,在减少储能配置的同时优化功率波动管理。该预测性控制思路可拓展至光储充一体化场景,通过提前调度PowerTitan储能系统应对辐照突变,降低系统停机率并提升能效,为海水淡化等高能耗应用提供更经济的解决方案。