← 返回
光伏发电技术
★ 5.0
高密度城市环境中光伏、光伏光热与太阳能热系统的规模化分析
Large-scale analysis of photovoltaic, photovoltaic-thermal, and solar thermal systems in high-density urban environments
| 作者 | Arash Kazemia · Changying Xiang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Developed a data-driven framework for solar energy in dense urban environments. |
语言:
中文摘要
摘要 在高密度城市环境中,城市太阳能的部署通常受限于屋顶可用性、建筑高度以及遮挡效应。本研究提出了一种稳健且以数据驱动的框架,整合高分辨率地理信息系统(GIS)数据、三维建筑模型和详细的都市形态信息,用于评估多种太阳能技术的潜力,包括标准光伏系统、光伏光热(PVT)系统(例如采用水、空气或制冷剂作为传热介质)以及太阳能热系统(例如平板型或真空管集热器,使用水或空气作为传热介质)。以香港为案例进行研究,分析揭示了城市几何形态的影响,结果显示考虑遮挡效应后,屋顶太阳辐射量平均减少31%。在所评估的技术中,光伏光热系统表现出最高的综合能源产出,通过40%的屋顶利用率每年可产生约15.99太瓦时(TWh)的电能与热能。其中,电能产量为每年4.0太瓦时,约占香港总用电量(2022年为44.8太瓦时)的8.9%,而电力占其终端能源使用的33%。在住宅部门中,制冷和热水供应各占能源需求的25–26%,凸显了同时提供热能与电能输出的重要价值。热能结果代表理论最大值,因未建模建筑具体的热负荷需求。该部署方案最多可抵消当前能源进口量的30.8%,使氮氧化物(NOₓ)排放减少44.3%,并降低形成烟雾的污染物排放8.6%。所提出的框架为城市能源规划提供了一种可扩展且可转移的方法,使全球城市能够更有效地利用屋顶太阳能资源,提升可持续性与气候适应能力。
English Abstract
Abstract Urban solar energy deployment in high-density environments is often limited by rooftop availability, building height, and shading. This study presents a robust, data-driven framework integrating high-resolution Geographic Information System data, 3D building models, and detailed urban morphology to evaluate the potential of various solar technologies, including standard photovoltaic systems, photovoltaic-thermal (PVT) systems (e.g., using water, air, or refrigerant as heat transfer media), and solar thermal systems (e.g., flat-plate or evacuated tube collectors with water or air). Using Hong Kong as a case study, the analysis highlights the impact of urban geometry, showing that incorporating shading reduces rooftop solar radiation by 31 %. Among the technologies assessed, photovoltaic-thermal systems demonstrate the highest combined energy yield, generating approximately 15.99 TWh per year (electricity and heat) from 40 % rooftop utilization. Of this, electricity accounts for 4.0 TWh/year—about 8.9 % of Hong Kong's total electricity consumption (44.8 TWh in 2022), which comprises 33 % of its final energy use. In the residential sector, cooling and hot water each account for 25–26 % of energy demand, emphasizing the value of combined thermal and electrical outputs. Thermal results represent theoretical maximums, as building-specific thermal demands were not modelled. This deployment could offset up to 30.8% of current energy imports, lower NOₓ emissions by 44.3%, and decrease smog-forming pollutants by 8.6%. The proposed framework offers a scalable, transferable approach to urban energy planning, enabling cities worldwide to harness rooftop solar energy more effectively for sustainability and climate resilience.
S
SunView 深度解读
该研究对阳光电源城市光伏解决方案具有重要参考价值。研究显示光伏热电联产(PVT)系统在高密度城市环境中能实现最高综合能源产出(15.99 TWh/年),这与阳光电源SG系列逆变器的多场景适配能力高度契合。针对城市遮挡导致辐射降低31%的挑战,可通过MPPT优化技术和iSolarCloud平台的智能监控提升发电效率。研究强调的电热联供模式,为整合ST系列储能系统与光伏逆变器提供了应用场景,特别是在居民冷热需求各占25%的情况下,可开发PVT+储能+热管理的一体化城市能源解决方案,助力高密度城市实现碳中和目标。