← 返回
风电变流技术 ★ 5.0

揭示青藏高原理论风能潜力:一种针对威布尔双变量分布的新型贝叶斯-蒙特卡洛框架

Revealing the theoretical wind potential of the Qinghai-Tibet Plateau: A novel Bayesian Monte-Carlo framework for the Weibull bivariate distribution

作者 Liting Wang · Renzhi Liu · Weihua Zeng · Lixiao Zhang · Huaiwu Peng · John Kaiser Calautit · Bingran Ma · Ruijia Zhang · Xiyao Ma · Xiaohan Li
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 325 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A new Bayesian Monte-Carlo framework for Weibull parameter estimation is proposed.
语言:

中文摘要

摘要 理解区域理论风能潜力对于风电规划与建设至关重要。以往的研究面临诸多挑战,包括风速数据质量不一致、分布参数中的不确定性未被量化,以及估算理论风能潜力的方法存在缺陷。因此,本研究提出了一种分层贝叶斯-蒙特卡洛框架,以概率性和分层方式处理多年期、多来源的风速数据。该框架能够量化风速分布及其参数相关的不确定性,并通过整合历史数据降低预测误差。此外,本研究在传统理论风能潜力估算方法的基础上,进一步考虑了叶片扫掠高度范围内风速和空气密度变化以及最大可能功率系数的影响。结果表明,青藏高原地区的风速分布符合威布尔函数,其参数k和λ的先验分布为伽马函数。采用Metropolis-Hastings算法模拟后验分布显示,在合并两条马尔可夫链后,参数k和λ的整体标准差分别小于0.0193和0.0244 m/s,其不确定性分别小于0.08和0.097 m/s。预测风速与实测风速之间的差异小于0.089 m/s。这些结果验证了分层贝叶斯-蒙特卡洛模型的有效性与可靠性。此外,在青藏高原地区,19.31%的区域具有最高的理论风能潜力,21.43%的区域处于高水平,19.78%的区域处于中等水平。因此,本研究建立的灵活方法论框架可有效支持跨区域风电开发最优选址的识别工作。

English Abstract

Abstract Understanding the regional theoretical wind potential is crucial for wind power planning and construction. Previous studies have faced challenges including inconsistent wind speed data quality, unquantified uncertainties in distribution parameters, and flawed methods for estimating theoretical wind potential. Therefore, this study introduced a Hierarchical Bayesian-Monte Carlo framework that processed multi-year and multi-source wind speed data in a probabilistic and hierarchical manner. It could quantify the uncertainties associated with wind speed distributions and their parameters and reduce prediction errors by integrating the historical data. Moreover, the effects of wind speed and air density variations over the blade sweep height and the maximum possible power coefficient were considered on the traditional method of estimating theoretical wind potential. The results showed that the wind speed distributions in the Qinghai-Tibetan Plateau followed Weibull functions, with the prior distributions of their parameters k and λ being gamma functions. Using the Metropolis-Hastings algorithm to simulate the posterior distributions indicated that the overall standard deviations after merging the two chains of k and λ were less than 0.0193 and 0.0244 m/s, respectively. The uncertainties of k and λ were less than 0.08 and 0.097 m/s, respectively. The discrepancies between the predicted and actual wind speeds were less than 0.089 m/s. These findings confirmed the validity and reliability of the Hierarchical Bayesian-Monte Carlo model. Furthermore, in the Qinghai-Tibetan Plateau, 19.31 % of the area had the maximum theoretical wind potential, 21.43 % a high level, and 19.78 % a moderate level. Consequently, the flexible methodological framework established by this study can effectively support the identification of optimal locations for wind power development across regions.
S

SunView 深度解读

该青藏高原风电潜力评估框架对阳光电源风电变流器布局具有重要参考价值。贝叶斯-蒙特卡洛模型可量化风速分布不确定性,为ST储能系统在高原风电场的容量配置提供精准数据支撑。研究揭示的风速-空气密度垂直变化特性,可优化风电场侧储能PCS的功率预测算法和充放电策略。青藏高原60%以上区域具中高风电潜力,结合iSolarCloud平台的多源数据融合能力,可实现风光储一体化项目的选址优化和预测性运维,提升系统整体经济性。